
Learning Runtime Parameters in Computer Systems
with Delayed Experience Injection

Michael Schaarschmidt
University of Cambridge

michael.schaarschmidt@cl.cam.ac.uk

Felix Gessert
University of Hamburg

gessert@informatik.uni-hamburg.de

Valentin Dalibard
University of Cambridge

valentin.dalibard@cl.cam.ac.uk

Eiko Yoneki
University of Cambridge

eiko.yoneki@cl.cam.ac.uk

Abstract

Learning effective configurations in computer systems without hand-crafting mod-
els for every parameter is a long-standing problem. This paper investigates the use
of deep reinforcement learning for runtime parameters of cloud databases under
latency constraints. Cloud services serve up to thousands of concurrent requests
per second and can adjust critical parameters by leveraging performance metrics.
In this work, we use continuous deep reinforcement learning to learn optimal
cache expirations for HTTP caching in content delivery networks. To this end, we
introduce a technique for asynchronous experience management called delayed
experience injection, which facilitates delayed reward and next-state computation
in concurrent environments where measurements are not immediately available.
Evaluation results show that our approach based on normalized advantage functions
and asynchronous CPU-only training outperforms a statistical estimator.

1 Introduction

In recent years, reinforcement learning (RL) algorithms have been successfully combined with deep
neural networks as function approximators[16, 17, 26]. Neural networks can capture structure in
the environment from high-dimensional raw inputs and efficiently generalize over large state spaces.
Deep reinforcement learning (DRL) techniques hence provide a powerful end-to-end task learning
model from sensory inputs without prior knowledge of environment dynamics. However, training
value functions for complex tasks requires significant training times and substantial computational
resources.

There is another set of control problems in the domain of computer systems which are characterized
by smaller problem dimensions and strong latency constraints. The problem this paper addresses is
the utilization of DRL to provide real-time controllers for such problems. The key idea of this paper
is that for comparatively small state dimensions (< 100) and tasks with weaker structure, no extended
offline training is necessary to implement effective controllers.

As an example application, we consider cloud database services (database-as-a-service; DBaaS),
which manage data and automate the operations of distributed database infrastructures. They typically
employ a convention-over-configuration paradigm and do not adjust request-level parameters unless
specified by developers. Nonetheless, many configuration parameters have significant performance
impact for clients. In order to adjust them at runtime, one must address several challenges.

First, the impact of individual actions taken in the system is difficult to measure due to serving many
concurrent requests. Further, measuring system performance might only be possible after some time

Deep Reinforcement Learning Workshop, NIPS 2016, Barcelona, Spain.

has passed. Second, client-server architectures might prevent infrastructure providers from directly
observing client performance. This work addresses the challenges of concurrent delayed credit
assignment by introducing a mechanism for concurrent asynchronous experience management called
delayed experience injection. Specifically, we modify normalized advantage functions [11], a recently
introduced method for continuous deep reinforcement learning, to learn optimal cache expiration
durations for dynamically changing query results. Results show that our controller outperforms a
statistical estimator based on arrival processes.

2 Background and related work

2.1 Preliminaries

The parameter learning problem conforms to the setting of an infinite-horizon discounted Markov
decision process where an agent interacts with an environment described by states s ∈ S and aims to
learn a policy π that governs which action a ∈ A to take in each state [21]. At each discrete time
step t, the agent takes an action at according to its current policy π(a|s), transitions into a new state
st+1 according to the (often stochastic) environment dynamics, and observes a reward rt. The goal
of the agent is to maximize cumulative expected rewards R = E[

∑
t γ

trt], where future rewards are
discounted by γ. This is often achieved by learning a Q-function Qπ(st, at) which represents the
expected return when starting from state st, taking action at with the highest Q-value and following
π thereafter [27]. Mnih et al. have demonstrated how deep neural networks can be used as value
functions for a variety of complex tasks by utilising a replay memory of stored experiences, and using
a second value function to stabilize learning (fixed Q-target) [17].

In this work, we utilize normalized advantage functions (NAFs), which have recently been suggested
as an effective method for continuous DRL [11]. The key problem in continuous RL is to efficiently
select the action maximising the Q-function, i.e. arg maxaQ(s, a) while avoiding to perform a
costly numerical optimization at each step. Unlike other approaches in continuous DRL (e.g. deep
deterministic policy gradients [14]), NAFs avoid the use of a second actor or policy network that
needs to be trained separately. A single neural network Q(s, a|θQ) is used to output both a value
function V (s|θV):

V π(st|θV) = Eri≥t,si>t∼E,ai≥t∼π[Rt|st, at] (1)

and an an advantage term Aπ(st, at):

Aπ(st, at|θA) = Qπ(st, at|θQ)− V π(st|θV) (2)

Decomposing Q into a state-value term V and an advantage term A is a technique for variance
reduction often used in policy gradient methods [1, 2]. Gu et al. suggest using a quadratic advantage
term:

A(s, a|θA) = −1

2
(a− µ(s|θµ))P (s|θP)(a− µ(s|θµ)), (3)

where P (s|θP) is a positive-definite square matrix parametrized by a lower-triangular matrix L(s|θP),
which is given by a linear output of the network (P (s|θP) = L(s|θP)L(s|θP)T), with the diagonal
entries exponentiated. Hence, the maximizing action is always given by µ(s|θµ). Updates are
computed by minimizing the mini batch loss L = 1

N

∑
i(γi − Q(si, ai|θQ))2 and using a replay

memory, as well as a target network Q′ (as described by Mnih et al.) to compute yi = ri +

γV ′(si+1|θQ
′
). NAFs are especially appealing in our context because using a single network

simplifies asynchronous update semantics.

2.2 Related work

Our work is conceptually most similar to Tesauro et al.’s work on resource allocation in data
centres [22, 23, 25]. They utilized a perceptron with a single hidden layer to make server allocation
decisions for different applications. Their method aims to maximize the expected sum of service
level agreement payments while minimizing penalties for unmet service-level objectives. Their state
comprised the mean arrival rate of HTTP requests and the number of currently allocated servers.
The same approach has also been successfully applied to power management of web servers [24].

2

Notably, their solution relies on a hybrid approach where initial values are improved by a parametric
model. Our work similarly relies on arrival rates of certain events but shifts learning from global
state and server-level decisions to per-request state and request-level decisions. RL has also been
employed for auto-configuration of Xen virtual machines [20, 29].

For web caching, Candan et al. initially explored the notion of invalidation-based caching for web
content [4], as opposed to treating web caches as static content stores or media distribution servers
[7, 12].

Prior approaches on thread-parallel or distributed DRL such as A3C [15] or Gorila [18] accelerate
training by having learners operate on separate copies of single-threaded environments (e.g. Atari
simulator). Gu et al. have also recently applied distributed asynchronous NAFs to shared learning
of 3D robot manipulation tasks [10]. In their work, distributed robot controllers asynchronously
share their (sequentially) collected experiences with a central server. In contrast, our work considers
thread-asynchronous training in a single node environment with a high degree of concurrency and
delayed asynchronous reward assignment.

3 Problem overview

3.1 Estimating cache expirations

We consider the problem of learning parameters for cloud database services on a per-request level
granularity. For each request, the database server can set response parameters affecting client
performance. Multiple clients (e.g. mobile devices) can query and update the same entries in a single
database. In this paper, we address the problem of estimating cache expiration times (time-to-live;
TTL) for dynamically changing query results, which we now introduce.

A query q issued by a client is executed by a database and yields a set of result records of varying
cardinality n, identified by their unique keys k1, .., kn. Query results can be cached for a specified
time interval t = TTL at server-controlled caches such as content delivery networks (CDNs) or
reverse-proxy caches. If a key k is updated, all cached queries containing k become invalid and an
invalidation request is sent to all caches. There are multiple reasons why estimating accurate TTLs
for query results is critical.

First, the server has to store all cached queries and their expiration times to determine which queries
need to be invalidated. Using indiscriminately large TTLs for dynamically changing database content
would thus both strain cache capacities as well as create too much overhead to determine invalidations,
as every update needs to be compared against all cached queries. Further, every invalidation creates
the potential for stale reads, as clients can retrieve stale cached results while the invalidation is
propagated to all cache edges [8]. In contrast, small TTLs increase client latencies significantly if
the database server is physically remote since web performance is primarily governed by round-trip
latency [9]. In the following subsection, we will introduce a Monte Carlo framework designed to
analyze web request flows.

3.2 Simulation environment

We have implemented a Monte Carlo simulation inspired by the Yahoo! cloud serving benchmark
(YCSB) [5, 19]. YCSB is a benchmark suite for cloud databases and defines a set of typical web work-
loads (e.g. read-dominant, scan-intensive, write-dominant). Custom workloads can be specified with
properties such as request distribution, record count, operation count, and read/write/insert/scan/delete
mixture. After running a workload, YCSB provides throughput and latency histograms. Our imple-
mentation provides the same workloads but instead of just providing a client interface and workloads,
we stack together multiple layers (clients, caches, databases) and replicate web connection semantics.
That is, YCSB operates on a synchronous thread-per-request model while web browsers typically use
6 HTTP connections and fetch multiple resources asynchronously.

Figure 1 gives a schematic overview of the request flow for queries. Clients sample query or update
requests from the workload mixture. In the simulation, each entry has a single field with a numerical
value. Operations read or modify a single key k drawn from an access distribution. For easier result
size control, queries are defined as range queries that request all objects for which the corresponding
database entry satisfies the range predicate on the numerical field.

3

Figure 1: Overview of our Monte Carlo simulator. Clients issue requests which first go against local
cache edges. On a cache miss, requests are forwarded to a backend in another geographical region,
inducing much higher round-trip latency. The DBaaS middle ware collects metrics on writes, cache
misses and invalidations.

We assume the setting of a geographically remote database server hosted in the California Amazon
EC2 region with a client located in Europe. Clients can drastically reduce request latencies if
dynamically changing query results are present in a near cache such as content delivery network
(CDN) edge. Multiple clients may query and write the same data, e.g. by commenting on a social
media post or refreshing their news feed. If a client executes an update operation on a key against the
DBaaS, it determines which queries need to be invalidated by re-evaluating a maintained index of
cached queries against the update (e.g. through stream processing). Entries are removed from the
index once the respective TTL expires. In the simulation, we pre-construct an index of queries and
initial result keys and can thus cheaply determine invalidated queries by incrementally updating this
index at runtime. The DBaaS then sends out asynchronous invalidation requests to the CDN. We
regard a read operation as a special case of query with result size one. If another client requests a
cached entry before an invalidation has been completed, a stale read occurs [8]. For TTL estimation,
the server can utilize update rates on records as well as cache miss rates and invalidations on queries.
In the following section, we will discuss different TTL estimation strategies and explain how our
approach leverages these metrics.

4 Estimating TTLs

4.1 True TTL

We begin by considering a hypothetical optimal strategy. Ideally, TTLs are estimated to expire right
before an update invalidates the respective cached result. We define the true TTL as the interval
between serving the query and the query result being invalidated by a write w. In our simulation, we
can hence capture the optimal action for every step after the respective query has been invalidated.
Since this would not capture true TTLs for queries which expire from the cache without invalidation,
we further measure the "theoretical" true TTL for queries which are currently not cached by evaluating
which queries would have been invalidated if they had not expired.

4.2 Baseline solution

We first introduce a baseline solution relying on the assumption of a Poisson process of incoming
updates. For a Poisson process, the inter-arrival times of events have an exponential cumulative
distribution function (CDF), i.e. each of the identically and independently distributed random
variables Xi has the cumulative density F (x;λ) = 1− e(−λx) for x ≥ 0 and mean 1/λ. For now,
we make the impractical assumption that for each database record, there is an estimate of the rate of
incoming writes λw over some time window.

The result set of a query of cardinality n can then be regarded as a set of independent exponentially
distributed random variables Xi, . . . , Xn with different write-rates λw1, . . . , λwn. Estimating the

4

TTL for the next update to any element of the result set requires a distribution that models the
minimum time to the next write, i.e. Xmin = min{X1, . . . , Xn}, which is again exponentially
distributed with λmin = λw1 + . . .+ λwn. We can hence obtain an estimate of the TTL by using the
expected value until the next write on any record present in the result set, which would invalidate
the cached result: TTLpoisson = E[Xmin] = 1/λmin. As we will show in the evaluation, the key
problem of this approach is providing it with default write rates or default TTLs if no write-rate
information is available.

4.3 TTL estimation with NAFs

Motivation. TTL estimation is an appealing problem for reinforcement learning solutions as they
provide a natural way to deal with time-dependent and noisy feedback loops in control problems.
We proceed to model the TTL estimation problem using NAFs. First, the previous solution does
not distinguish between queries that are read often and queries that are requested very rarely, i.e. it
does not incorporate cache miss rates. Second, the baseline solution cannot deal well with sparse
information in the state: For most objects, write rate information might not be available. Given no (or
often partial) information an estimator needs to fall back to default values.

State. We use individual record metrics to learn TTLs for query result sets. This is preferable to
using an encoding of a query itself as the state, since many equivalent query strings lead to the same
result. Using record-level metrics allows for an easier generalization when the result sets of seen and
unseen queries overlap. Since update and query operations are generally independent, we also utilize
query cache miss rates as part of the state to measure TTL impact by inputting the difference between
current and last miss rate.

Query results can significantly vary in size but the contribution of records which are rarely updated to
the TTL should be negligible. We hence set the number of inputs to the mean expected result size n
and input a sorted vector of the top n available write rates to the network – other components in the
case of card(result) > n are discarded.

Reward. The reward needs to encode as much information as possible from what the DBaaS can
observe. From a service provider’s perspective, rewards should allow to trade off invalidations against
cache misses. The server cannot observe direct reward measures such as cache hit rates for clients or
CDN cache utilisation. We note that we expect most queries not to be invalidated frequently (or at all)
due to the power-law nature of web workloads [3]. Hence, using the expected invalidation rate as a
TTL estimation strategy is unlikely to be successful as there will be no information for most queries.

To punish invalidated queries, the agent needs to know which actions cause a query to be invalidated
by a later write. This means the server can only sensibly measure a reward after some delay td. The
same problem exists for state measurements relying on cache miss rates. If there is an invalidation at
time tinv before the expiration timestamp of a cached query texp, the reward can be computed as the
difference between invalidation time and expiration time (in seconds), i.e. rt = tinv − texp. If there
has been no invalidation, less informative metrics have to be used.

No invalidation before expiration means that the TTL could have been higher unless capacity
constraints prohibit longer caching times. In this case, we hence use a static reward r and scale it by
the current load ct (current cached queries divided by capacity) to encourage longer TTLs when fewer
queries are cached and shorter TTLs when load is close to capacity (by using −ct if larger than some
threshold), i.e. rt = r · (1 + ct). The intuition behind this approach is that only using invalidation
timestamps would not allow to give a reward for 80−90% of queries (due to low invalidation rates, as
shown in the evaluation), and would not give opportunity to globally up- or down-regulate estimates
according to system-wide load. In the following section, we explain how we practically perform
delayed reward and next-state measurements.

4.4 Delayed experience injection

In standard RL semantics, the agent sequentially moves through a Markov decision process by taking
steps and recording transitions of state, action, reward and next-state. When using a replay memory,
learning is decoupled from current state and actions by sampling transitions from the memory to
perform mini-batch gradient descent. Consequently, if the desired runtime measurements for rewards

5

and next-states are not available immediately and the agent has to deal with many concurrent requests,
the application needs to keep track of "incomplete" transitions and decide when to complete them.

Algorithm 1 Asynchronous NAF with delayed experience injection.
Initialize empty replay memoryR ← ∅
Initialize Q-network Q(s, µ|θQ) with random weights
Initialize target network Q’ with weight θQ

′ ← θQ

Initialize random process N for initial exploration
for t = 1, T do

Select action at = µ(st|θµ) +Nt
Create incomplete transition (st, at),
Enqueue (st, at) in expiration queue with expt = now() + td
At t = expt, asynchronously execute queue consumer:

Compute rt and st+1

Insert complete transition (st, at, rt, st+1) intoR.
Submit asynchronous loss computation:

Compute yi = ri + γV ′(si+1|θQ
′
)

Minimize L = 1
N

∑
i(γi −Q(si, ai|θQ))2

Periodically update θQ
′ ← θQ

end for

Algorithm 1 shows the control flow in our model. The DBaaS server computes the state from write rate
and cache miss metrics for an incoming query and creates an incomplete transition (st, at). This is
then enqueued into an expiration queue data structure which triggers an asynchronous consumer after
the specified delay td, which we set to at in our experiments (i.e. the TTL). The consumer computes
the reward and the next state as described above by requesting the last invalidation timestamp and
cache miss rate. It then inserts the completed transition (st, at, rt, st+1) into the replay memory
R, a mechanism we call delayed experience injection (DEI). DEI decouples not only current state
from learning (as a replay memory does) but also decouples future state and reward computation
for specific queries from the sequence of incoming states. Hence, NAF-DEI also solves a different
problem than the recently introduced distributed asynchronous NAF [10], where multiple controllers
sequentially collect experiences without delay in the experience computation itself. Further, the
difference between DEI and the standard delayed reward assignment problem [28] is that DEI deals
with concurrent delayed credit assignment.

Updates are performed similar to standard NAF except that the update step is also computed asyn-
chronously by another thread. This is necessary because blocking incoming decision queries on the
update step would result in latency spikes.

5 Evaluation

5.1 Setup

The goal of the evaluation is to demonstrate the principal feasibility of using deep reinforcement
learning for request-level parameter learning. We begin by describing the experimental setup. We
have implemented our simulator in Java 8 (for YCSB compatibility) and utilized deeplearning4j
[6] (0.5.0) for the NAF implementation. We set 10 clients with each 6 concurrent connections to
execute a combined target throughput of 1,000 (asynchronous) operations per second. They accessed
10,000 documents with 1,000 distinct queries under varying workloads. Updates and queries were
drawn from a Zipfian distribution (Zipf constant 0.6). Each workload was run for 30 minutes on a
commodity 4 core desktop machine and results were averaged over five runs. Query result sizes were
set to be between [1, 20] documents by sampling scan ranges fromN (10, 5) (resp. N (5, 2) in smaller
experiments). Simulated round-trip latencies reflected a client in Europe, a CDN edge in Europe (4
ms round trip latency), and a server in the EC2 California region (150 ms round trip latency.)

The NAF agent used 10 inputs (resp. half the maximal result size in other experiments) for write
rates w and 1 input for cache miss differences for 11 inputs in total, followed by 2 hidden layers with
each 30 neurons using rectified linear unit activations. Updates were performed using an Adam [13]

6

updater with mini-batches of size 10 (all training was executed by the CPU due to the small model
size). Learning was non-episodic and fully on-policy after an initial exploration period. The learning
rate was set to α = 0.0005 with gradients clipped at 30, allowing for aggressive updates.

5.2 Results

0.10 0.15 0.20 0.25 0.30
Write rate

0

10

20

30

40

R
M

S
E

(s
)

NAF-DEI

NAF-naive

Poisson estimator

(a) Errors against optimal policy
for different workload mixtures.

0 20 40 60 80 100
TTL (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
p

ro
b

ab
ili

ty

NAF-DEI π 20% writes

Optimal π 20% writes

Poisson π 20% writes

(b) Comparison of learned, optimal
and Poisson CDF for w = 20%.

0.10 0.15 0.20 0.25 0.30
Write rate

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

NAF-DEI cache hit rate

NAF-DEI invalidation rate

Poisson cache hit rate

Poisson invalidation hit rate

(c) Cache performance.

Figure 2: Evaluation of our approach against different baseline configurations.

Figure 2a compares results for different workload mixtures as the root-mean-squared per-step error
(RMSE) against the optimal policy (truncated at the 99th percentile to remove outliers). The Poisson
estimator is limited by its need to specify some default action if no write rate estimates are available.
A feasible strategy is to set a maximum for TTLs and presume that the write rate on unknown objects
corresponds to the inverse maximum. This is preferable to setting a single default estimate because
such a default value would not account for different result sizes. We ran a number of configurations
for the Poisson estimator and report the error for the best configuration (max TTL 300 s). The NAF
agent (using DEI) outperformed the Poisson estimator, as it is not dependent on a maximum value
and uses 0 as input if no write rate is available instead of default per-key estimates.

Further, we show the impact of running NAF without DEI (NAF-naive). NAF-naive instantly
computes rewards and will thus rely on invalidations caused a by prior action, creating much larger
error and larger standard deviations (for some configurations, learning from the wrong rewards leads
to good accidental performance). NAF-DEI outperformed naive NAF by 38.5% on average. While
the TTL estimation problem is a special case due to the action being a time period where the delay
is set to the action value, delayed asynchronous reward computation is likely beneficial to various
other problems with high degrees of concurrency. We also observe that the absolute error is large for
all solutions and improves with larger write rates, as more per-key information becomes available
and the CDF turns steeper. Figure 2b compares CDFs from traces of NAF-learned, optimal and
Poisson-estimated policies. Both approaches produce an overly steep CDF as the long tail of the
optimal policy is principally difficult to predict.

It is important to recognize hat the theoretical optimal TTL we use to compute errors is not an ideal
performance measure. It assigns an error to queries which expire without invalidation by computing
the error until a future point in time when this query would have been invalidated if it had still been
cached. In contrast, the reward function specifies a complex trade-off between invalidations, cache
misses and global load. We nonetheless report this error since it allows for a more neutral comparison
of strategies with different objective functions. We also compared learning performance in different
settings to a hypothetical default-value predictor which knows in advance which single default value
would give the lowest error per workload mixture. Our results show that the learner can outperform
the default-predictor by over 60% for individual queries and up to 20% for the top 20% of queries
(sorted by observed cache misses) for some workloads, performing better with smaller result sizes.
With increasing write rates or increasing result sizes, true TTL distributions become more narrow and
outperforming a default value is more difficult. However, the learner’s mean error roughly matches
(sometimes outperforms) the default-predictor due to large errors from the long tail of the access
distribution. Note that the NAF-agent’s error includes the online training period, as we wanted to
evaluate the feasibility of a controller without prior training.

Figure 2c shows actual cache performance in terms of achieved cache hit rates (higher is better) and
invalidation rates (lower is better). NAF-DEI accepts slightly higher invalidation rates to ensure high
cache performance while the Poisson estimator tends to predict lower TTLs due to using default
write rates. Assuming an equal weighting between cache hit rate and invalidation rate, NAF-DEI

7

offers much better cache performance with mean cache hit rate 88.5% for w = 10% with 7.3%
invalidations versus 79.5% cache hit rate and 6.8% invalidations for the Poisson estimator. For
w = 30%, NAF-DEI achieved 77.7% cache hits and 21.4% invalidations versus 62.6% cache hits
and 15.6% invalidations for the Poisson estimator. These results stress that simply estimating lower
TTLs does not save many invalidations if estimates are imprecise on a per-query level.

0 100 200 300
Cache misses for query

0

10

20

30

40

50

T
T

L
va

lu
e

(s
)

NAF-DEI TTL

True TTL

(a) Query trace with w = 10%.

0 100 200 300
Cache misses for query

0

10

20

30

40

T
T

L
va

lu
e

(s
)

NAF-DEI TTL

True TTL

(b) Query trace with w = 30%.

0 100 200 300
Cache misses for query

0

10

20

30

T
T

L
va

lu
e

(s
)

NAF-DEI TTL

True TTL

(c) Reward-adjusted query trace
with w = 30%.

Figure 3: Individual query trace examples illustrate learning over time and noise in the optimal policy.

To better understand learning behavior, we examine traces of individual queries through experiment
runs. Figure 3a shows learned and optimal actions for every instance an individual query is observed
throughout one experiment with w = 10%, illustrating both the online learning process and the noise
in the optimal policy. Note that while learning seems fast, the plot does not show how much time
(and hence learning from other queries) passes between each instance of the query. For a throughput
of 1, 000 concurrent requests per second, most learning (by magnitude of error) took place in the
first few minutes (about 20% of experiment duration). For w = 30%, the agent uses the additional
information from both more writes and faster changing cache miss rates to make more specific
guesses, as seen in figure 3b. While the learner seems to match the general shape of the series of
true TTLs, it systematically overestimates true values by 5− 10 s. This is because the reward was
statically configured to always encourage high cache hit rates independent of higher write rates. In
figure 3c, we adjusted rewards according to the workload mixture, i.e. we encouraged the load to
stay below 1 − w. Consequently, TTLs for the query decrease over time once the cache fills up.
The Poisson estimator could be similarly tuned by using not the expected value until seeing the next
write but some other quantile, e.g. 75% to encourage higher cache hit rates. However, RL-based
solutions offer a natural interface to incorporate additional performance metrics without having to
translate them into an analytical model, i.e. by determining which Poisson parameters correspond to
the desired performance.

Our results allow some outlook on learning parameters at a much larger scale. Due to the Zipf
nature of web workloads [3], most queries and updates will concentrate on a small sets of "hot"
database records for which it might be feasible to track runtime information and use them for specific
predictions. In conclusion, the combination of small model size and a high degree of concurrency
allowed NAF-DEI to achieve an effective trade-off between avoiding invalidations and ensuring high
cache hit rates without requiring prior training.

6 Conclusion and future work

To the best of your knowledge, this work presents the first application of deep reinforcement learning
in predicting request-level parameters in computer systems. We introduced the concept of delayed
experience injection to capture asynchronous reward/next-state semantics in concurrent environments
where relevant metrics are only available later. The key idea of our work is that instead of learning
global parameters from global metrics, DRL can facilitate per-request decisions based on fine-grained
metrics. Results show that our NAF-based approach can outperform a statistical estimator on the
TTL estimation problem by leveraging available runtime information.

In future work, we will explore in more detail how to relate dynamic reward adjustments to specific
service level objectives in non-stationary environments. We have also made the simplifying assump-
tion of a single node backend receiving all incoming requests. Future work in this domain hence
needs to investigate coordination and distributed learning in infrastructures where each node only
observes part of the environment, as opposed to each node observing a separate copy of the problem.

8

Acknowledgements

This work was supported by the EPSRC (grant reference EP/M508007/1) and a Computer Laboratory
Premium Scholarship (Sansom scholarship).

References
[1] Advantage updating. Technical Report WL–TR-93-1146, Wright-Patterson Air Force Base

Ohio: Wright Laboratory, 1993.

[2] Advantage updating applied to a differential game. In editors Gerald Tesauro, et al, editor,
Advances in Neural Information Processing Systems 7, pages 353–360. MIT Press, 1994.

[3] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. Web caching and zipf-like distributions:
evidence and implications. In INFOCOM ’99. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, volume 1, pages 126–134 vol.1,
Mar 1999.

[4] K. Selçuk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin Hsiung, and Divyakant Agrawal.
Enabling dynamic content caching for database-driven web sites. In SIGMOD, pages 532–543,
New York, NY, USA, 2001. ACM.

[5] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, pages 143–154, New York, NY, USA, 2010. ACM.

[6] Deeplearning4j Development Team. Deeplearning4j: Open source distributed deep learning for
the JVM, Apache Software Foundation License 2.0. http://deeplearning4j.org.

[7] Michael J. Freedman. Experiences with coralcdn: A five-year operational view. In In Proc
NSDI, 2010.

[8] Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Steffen Friedrich, and Norbert Ritter.
The cache sketch: Revisiting expiration-based caching in the age of cloud data management.
BTW ’15, Hamburg, Germany, March 2015.

[9] Ilya Grigorik. High performance browser networking. O’Reilly Media, [S.l.], 2013.

[10] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep Reinforcement Learning for Robotic
Manipulation. ArXiv e-prints, October 2016.

[11] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning
with model-based acceleration. March 2016.

[12] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev Kumar, and Harry C. Li.
An analysis of facebook photo caching. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pages 167–181, New York, NY, USA, 2013. ACM.

[13] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. December
2014.

[14] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
September 2015.

[15] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lill-
icrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. February 2016.

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

9

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[18] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro
De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al.
Massively parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296,
2015.

[19] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio López, Garth Gib-
son, Adam Fuchs, and Billie Rinaldi. Ycsb++: Benchmarking and performance debugging
advanced features in scalable table stores. In Proceedings of the 2Nd ACM Symposium on Cloud
Computing, SOCC ’11, pages 9:1–9:14, New York, NY, USA, 2011. ACM.

[20] Jia Rao, Xiangping Bu, Cheng-Zhong Xu, and Kun Wang. A distributed self-learning approach
for elastic provisioning of virtualized cloud resources. In Modeling, Analysis & Simulation
of Computer and Telecommunication Systems (MASCOTS), 2011 IEEE 19th International
Symposium on, pages 45–54. IEEE, 2011.

[21] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[22] G. Tesauro, R. Das, W.E. Walsh, and J.O. Kephart. Utility-function-driven resource allocation
in autonomic systems. In Autonomic Computing, 2005. ICAC 2005. Proceedings. Second
International Conference on, pages 342–343, June 2005.

[23] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. A hybrid reinforcement learning approach
to autonomic resource allocation. In Proceedings of the 2006 IEEE International Conference on
Autonomic Computing, ICAC ’06, pages 65–73, Washington, DC, USA, 2006. IEEE Computer
Society.

[24] Gerald Tesauro, Rajarshi Das, Hoi Chan, Jeffrey Kephart, David Levine, Freeman Rawson,
and Charles Lefurgy. Managing power consumption and performance of computing systems
using reinforcement learning. In Advances in Neural Information Processing Systems, pages
1497–1504, 2007.

[25] Gerald Tesauro et al. Online resource allocation using decompositional reinforcement learning.
In AAAI, volume 5, pages 886–891, 2005.

[26] H. van Hasselt, A. Guez, and D. Silver. Deep Reinforcement Learning with Double Q-learning.
ArXiv e-prints, September 2015.

[27] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292, 1992.

[28] Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards. PhD thesis,
King’s College, Cambridge, UK, May 1989.

[29] Cheng-Zhong Xu, Jia Rao, and Xiangping Bu. Url: A unified reinforcement learning approach
for autonomic cloud management. Journal of Parallel and Distributed Computing, 72(2):95–
105, 2012.

10

	Introduction
	Background and related work
	Preliminaries
	Related work

	Problem overview
	Estimating cache expirations
	Simulation environment

	Estimating TTLs
	True TTL
	Baseline solution
	TTL estimation with NAFs
	Delayed experience injection

	Evaluation
	Setup
	Results

	Conclusion and future work

