it — Information Technology 2016; 58(4): 186-194

DE GRUYTER OLDENBOURG

Special Issue

Wolfram Wingerath*, Felix Gessert, Steffen Friedrich, and Norbert Ritter

Real-time stream processing for Big Data

DOI 10.1515/itit-2016-0002
Received January 15, 2016; accepted May 2, 2016

Abstract: With the rise of the web 2.0 and the Internet of
things, it has become feasible to track all kinds of infor-
mation over time, in particular fine-grained user activi-
ties and sensor data on their environment and even their
biometrics. However, while efficiency remains mandatory
for any application trying to cope with huge amounts of
data, only part of the potential of today’s Big Data repos-
itories can be exploited using traditional batch-oriented
approaches as the value of data often decays quickly and
high latency becomes unacceptable in some applications.
In the last couple of years, several distributed data pro-
cessing systems have emerged that deviate from the batch-
oriented approach and tackle data items as they arrive,
thus acknowledging the growing importance of timeliness
and velocity in Big Data analytics.

In this article, we give an overview over the state of the
art of stream processors for low-latency Big Data analytics
and conduct a qualitative comparison of the most popu-
lar contenders, namely Storm and its abstraction layer Tri-
dent, Samza and Spark Streaming. We describe their re-
spective underlying rationales, the guarantees they pro-
vide and discuss the trade-offs that come with selecting
one of them for a particular task.

Keywords: Distributed real-time stream processing, Big
Data analytics.

ACM CCS: General and reference — Document types —
Surveys and overviews , Computer systems organization
— Architectures — Distributed architectures — Cloud
computing , Computer systems organization — Real-time
systems — Real-time system architecture , Information
systems — Data management systems — Database man-
agement system engines — Stream management , Com-
puting methodologies — Distributed computing method-
ologies

*Corresponding author: Wolfram Wingerath, Univ. of Hamburg,
CS Dept., D-22527 Hamburg, Germany,

e-mail: wingerath@informatik.uni-hamburg.de

Felix Gessert, Steffen Friedrich, Norbert Ritter: Univ. of Hamburg,
CS Dept., D-22527 Hamburg, Germany

1 Introduction

Through technological advance and increasing connec-
tivity between people and devices, the amount of data
available to (web) companies, governments and other or-
ganisations is constantly growing. The shift towards more
dynamic and user-generated content in the web and the
omnipresence of smart phones, wearables and other mo-
bile devices, in particular, have led to an abundance of in-
formation that are only valuable for a short time and there-
fore have to be processed immediately. Companies like
Amazon and Netflix have already adapted and are mon-
itoring user activity to optimise product or video recom-
mendations for the current user context. Twitter performs
continuous sentiment analysis to inform users on trending
topics as they come up and even Google has parted with
batch processing for indexing the web to minimise the la-
tency by which it reflects new and updated sites [34].

However, the idea of processing data in motion is not
new: Complex Event Processing (CEP) engines [11, 12] and
DBMSs with continuous query capabilities [36] can pro-
vide processing latency on the order of milliseconds and
usually expose high-level, SQL-like interfaces and sophis-
ticated querying functionalities like joins. But while typi-
cal deployments of these systems do not span more than
a few nodes, the systems focused in this article have been
designed specifically for deployments with 10s or 100s of
nodes. Much like MapReduce, the main achievement of
these new systems is abstraction from scaling issues and
thus making development, deployment and maintenance
of highly scalable systems feasible.

In the following, we provide an overview over some
of the most popular distributed stream processing systems
currently available and highlight similarities, differences
and trade-offs taken in their respective designs.

Section 2 covers the environment in which the process-
ing systems featured in this article are typically deployed,
while the systems we focus on are described in Section 3.
We give an overview over other systems for stream process-
ing in Section 4 and conclude in Section 5.

Unangemeldet
Heruntergeladen am | 18.05.18 18:30

DE GRUYTER OLDENBOURG

2 Real-time analytics: Big Data in
motion

In contrast to traditional data analytics systems that col-
lect and periodically process huge — static — volumes of
data, streaming analytics systems avoid putting data at
rest and process it as it becomes available, thus minimis-
ing the time a single data item spends in the processing
pipeline. Systems that routinely achieve latencies of sev-
eral seconds or even subsecond latency between receiving
data and producing output are often described as “real-
time”. However, large parts of today’s Big Data infrastruc-
ture are built from distributed components that communi-
cate via asynchronous network and are engineered on top
of the JVM (Java Virtual Machine). Thus, these systems are
only soft-real-time systems and never provide strict upper
bounds on the time they take to produce an output.

Figure 1 illustrates typical layers of a streaming ana-
lytics pipeline. Data like user clicks, billing information or
unstructured content such as images or text messages are
collected from various places inside an organisation and
then moved to the streaming layer (e.g. a queueing system
like Kafka, Kinesis or ZeroMQ) from which it is accessible
to a stream processor that performs a certain task to pro-
duce an output. This output is then forwarded to the serv-
ing layer which might for example be an analytics web GUI
like trending topics at Twitter or a database where a mate-
rialised view is maintained.

In an attempt to combine the best of both worlds, an
architectural pattern called the Lambda Architecture [32]
has become quite popular that complements the slow
batch-oriented processing with an additional real-time
component and thus targets both the Volume and the
Velocity challenge of Big Data [29] at the same time.
As illustrated in Figure 2a, the Lambda Architecture de-
scribes a system comprising three layers: Data is stored

streaming

]

=
processing @G

. <
serving ,,,.|||||...|I|||II|

Figure 1: An abstract view on a streaming analytics pipeline.

W. Wingerath et al., Real-time streaming analytics for Big Data = 187

SEE=T:

streaming
streaming

persistence J
@]
£ batch

o
Lo

serving serving

(a) The Lambda Architecture. (b) The Kappa Architecture.

Figure 2: Lambda and Kappa Architecture in comparison.

in a persistence layer like HDFS from which it is ingested
and processed by the batch layer periodically (e.g. once
a day), while the speed layer handles the portion of the
data that has not-yet been processed by the batch layer,
and the serving layer consolidates both by merging the
output of the batch and the speed layer. The obvious ben-
efit of having a real-time system compensate for the high
latency of batch processing is paid for by increased com-
plexity in development, deployment and maintenance. If
the batch layer is implemented with a system that supports
both batch and stream processing (e.g. Spark), the speed
layer often can be implemented with minimal overhead by
using the corresponding streaming API (e.g. Spark Stream-
ing) to make use of existing business logic and the exist-
ing deployment. For Hadoop-based and other systems that
do not provide a streaming API, however, the speed layer
is only available as a separate system. Using an abstract
language like Summingbird [18] to write the business logic
enables automatic compilation of code for both the batch
and the stream processing system (e.g. Hadoop and Storm)
and thus eases development in those cases where batch
and speed layer can use (parts of) the same business logic,
but the overhead for deployment and maintenance still
remains.

Another approach that, in contrast, dispenses with
the batch layer in favour of simplicity is known as the
Kappa Architecture [25] and is illustrated in Figure 2b. The
basic idea is to not periodically recompute all data in
the batch layer, but to do all computation in the stream
processing system alone and only perform recomputation

Unangemeldet
Heruntergeladen am | 18.05.18 18:30

188 —— W. Wingerath et al., Real-time streaming analytics for Big Data

when the business logic changes by replaying historical
data. To achieve this, the Kappa Architecture employs
a powerful stream processor capable of coping with data
at a far greater rate than it is incoming and a scalable
streaming system for data retention. An example of such
a streaming system is Kafka which has been specifically
designed to work with the stream processor Samza in this
kind of architecture. Archiving data (e.g. in HDFS) is still
possible, but not part of the critical path and often not re-
quired as Kafka, for instance, supports retention times in
the order of weeks. On the downside, however, the effort
required to replay the entire history increases linearly with
data volume and the naive approach of retaining the en-
tire change stream may have significantly greater storage
requirements then periodically processing the new data
and updating an existing database, depending on whether
and how efficiently the data is compacted in the streaming
layer. As a consequence, the Kappa Architecture should
only be considered an alternative to the Lambda Architec-
ture in applications that do not require unbounded reten-
tion times or allow for efficient compaction (e.g. because it
is reasonable to only keep the most recent value for each
given key).

Of course, the latency displayed by the stream proces-
sor (speed layer) alone is only a fraction of the end-to-end
application latency due to the impact of the network or
other systems in the pipeline. But it is obviously an im-
portant factor and may dictate which system to choose in
applications with strict timing SLAs. This article concen-
trates on the available systems for the stream processing
layer.

3 Real-time processors

While all stream processors share some common ground
regarding their underlying concepts and working princi-
ple, an important distinction between the individual sys-
tems that directly translates to the achievable speed of pro-
cessing, i.e. latency, is the processing model as illustrated
in Figure 3: Handling data items immediately as they ar-
rive minimises latency at the cost of high per-item over-
head (e.g. through messaging), whereas buffering and pro-
cessing them in batches yields increased efficiency, but ob-
viously increases the time the individual item spends in
the data pipeline. Purely stream-oriented systems such as
Storm and Samza provide very low latency and relatively
high per-item cost, while batch-oriented systems achieve
unparalleled resource-efficiency at the expense of latency
that is prohibitively high for real-time applications.

DE GRUYTER OLDENBOURG

! I

stream 1 micro-batch | batch
I
| |
| I

Storm Trident |

Samza : Spark Streaming : Spark
| |

1
low latency high throughput
—_—

Figure 3: Choosing a processing model means trading off between
latency and throughput.

The space between these two extremes is vast and
some systems like Storm Trident and Spark Streaming em-
ploy micro-batching strategies to trade latency against
throughput: Trident groups tuples into batches to relax
the one-at-a-time processing model in favour of increased
throughput, whereas Spark Streaming restricts batch size
in a native batch processor to reduce latency. In the follow-
ing, we go into more detail on the specificities of the above-
mentioned systems and highlight inherent trade-offs and
design decisions.

3.1 Storm

Storm (current stable version: 1.0.0) has been in devel-
opment since late 2010, was open-sourced in September
2011 by Twitter and eventually became an Apache top-
level project in 2014. It is the first distributed stream pro-
cessing system to gain traction throughout research and
practice and was initially promoted as the “Hadoop of
real-time” [30, 31], because its programming model pro-
vided an abstraction for stream-processing similar to the
abstraction that the MapReduce paradigm provides for
batch-processing. But apart from being the first of its kind,
Storm also has a wide user-base due to its compatibil-
ity with virtually any language: On top of the Java API,
Storm is also Thrift-compatible and comes with adapters
for numerous languages such as Perl, Python and Ruby.
Storm can run on top of Mesos [5], as a dedicated cluster
or even on a single machine. The vital parts of a Storm
deployment are a ZooKeeper cluster for reliable coordi-
nation, several supervisors for execution and a Nimbus
server to distribute code across the cluster and take action
in case of worker failure; in order to shield against a failing
Nimbus server, Storm allows having several hot-standby
Nimbus instances. Storm is scalable, fault-tolerant and
even elastic as work may be reassigned during runtime.
As of version 1.0.0, Storm provides reliable state imple-
mentations that survive and recover from supervisor fail-
ure. Earlier versions focused on stateless processing and

Unangemeldet
Heruntergeladen am | 18.05.18 18:30

DE GRUYTER OLDENBOURG

I serving \

Figure 4: Data flow in a Storm topology: Data is ingested from the
streaming layer and then passed between Storm components, until
the final output reaches the serving layer.

thus required state management at the application level
to achieve fault-tolerance and elasticity in stateful appli-
cations. Storm excels at speed and thus is able to perform
in the realm of single-digit milliseconds in certain applica-
tions. Through the impact of network latency and garbage
collection, however, real-world topologies usually do not
display end-to-end latency below 50 ms [23, Chapter 7].

A data pipeline or application in Storm is called
atopology and as illustrated in Figure 4 is a directed graph
that represents data flow as directed edges between nodes
which again represent the individual processing steps: The
nodes that ingest data and thus initiate the data flow in the
topology are called spouts and emit tuples to the nodes
downstream which are called bolts and do processing,
write data to external storage and may send tuples further
downstream themselves. Storm comes with several group-
ings that control data flow between nodes, e.g. for shuf-
fling or hash-partitioning a stream of tuples by some at-
tribute value, but also allows arbitrary custom groupings.
By default, Storm distributes spouts and bolts across the
nodes in the cluster in a round-robin fashion, though the
scheduler is pluggable to account for scenarios in which
a certain processing step has to be executed on a particular
node, for example because of hardware dependencies. The
application logic is encapsulated in a manual definition of
data flow and the spouts and bolts which implement inter-
faces to define their behaviour during start-up and on data
ingestion or receiving a tuple, respectively.

While Storm does not provide any guarantee on the
order in which tuples are processed, it does provide the
option of at-least-once processing through an acknowl-
edgement feature that tracks the processing status of ev-
ery single tuple on its way through the topology: Storm
will replay a tuple, if any bolt involved in processing it ex-
plicitly signals failure or does not acknowledge successful

W. Wingerath et al., Real-time streaming analytics for Big Data =—— 189

processing within a given timeframe. Using an appropri-
ate streaming system, it is even possible to shield against
spout failures, but the acknowledgement feature is of-
ten not used at all in practice, because the messaging
overhead imposed by tracking tuple lineage, i.e. a tuple
and all the tuples that are emitted on its behalf, notice-
ably impairs achievable system throughput [20]. With ver-
sion 1.0.0, Storm introduced a backpressure mechanism to
throttle data ingestion as a last resort whenever data is in-
gested faster than it can be processed. If processing be-
comes a bottleneck in a topology without such a mecha-
nism, throughput degrades as tuples eventually time-out
and are either lost (at-most-once processing) or replayed
repeatedly to possibly time-out again (at-least-once pro-
cessing), thus putting even more load on an already over-
burdened system.

3.1.1 Storm Trident

In autumn 2012 and version 0.8.0, Trident was released
as a high-level API with stronger ordering guarantees and
a more abstract programming interface with built-in sup-
port for joins, aggregations, grouping, functions and fil-
ters. In contrast to Storm, Trident topologies are directed
acyclic graphs (DAGs) as they do not support cycles; this
makes them less suitable for implementing iterative algo-
rithms and is also a difference to plain Storm topologies
which are often wrongfully described as DAGs, but actu-
ally can introduce cycles. Also, Trident does not work on
individual tuples, but on micro-batches and correspond-
ingly introduces batch size as a parameter to increase
throughput at the cost of latency which, however, may still
be as low as several milliseconds for small batches [22].
All batches are by default processed in sequential order,
one after another, although Trident can also be configured
to process multiple batches in parallel. On top of Storm’s
scalability and elasticity, Trident provides its own API for
fault-tolerant state management with exactly-once pro-
cessing semantics. In more detail, Trident prevents data
loss by using Storm’s acknowledgement feature and guar-
antees that every tuple is reflected only once in persis-
tent state by maintaining additional information along-
side state and by applying updates transactionally. As of
writing, two variants of state management are available:
One only stores the sequence number of the last-processed
batch together with current state, but may block the entire
topology when one or more tuples of a failed batch cannot
be replayed (e.g. due to unavailability of the data source),
whereas the other can tolerate this kind of failure, but is
more heavyweight as it also stores the last-known state.

Unangemeldet
Heruntergeladen am | 18.05.18 18:30

190 — W. Wingerath et al., Real-time streaming analytics for Big Data

Irrespective of whether batches are processed in parallel
or one by one, state updates have to be persisted in strict
order to guarantee correct semantics. As a consequence,
their size and frequency can become a bottleneck and Tri-
dent can therefore only feasibly manage small state.

3.2 Samza

Samza (current stable version: 0.10.0) is very similar to
Storm in that it is a stream processor with a one-at-a-
time processing model and at-least-once processing se-
mantics. It was initially created at LinkedIn, submitted to
the Apache Incubator in July 2013 and was granted top-
level status in 2015. Samza was co-developed with the
queueing system Kafka [4, 26] and therefore relies on the
same messaging semantics: Streams are partitioned and
messages (i.e. data items) inside the same partition are or-
dered, whereas there is no order between messages of dif-
ferent partitions. Even though Samza can work with other
queueing systems, Kafka’s capabilities are effectively re-
quired to use Samza to its full potential and therefore it is
assumed to be deployed with Samza for the rest of this sec-
tion. In comparison to Storm, Samza requires a little more
work to deploy as it does not only depend on a ZooKeeper
cluster, but also runs on top of Hadoop YARN [6] for fault-
tolerance: In essence, application logic is implemented as
a job that is submitted through the Samza YARN client
which has YARN then start and supervise one or more con-
tainers. Scalability is achieved through running a Samza
jobin several parallel tasks each of which consumes a sep-
arate Kafka partition; the degree of parallelism, i.e. the
number of tasks, cannot be increased dynamically at run-
time. Similar to Kafka, Samza focuses on support for JVM-
languages, particularly Java. Contrasting Storm and Tri-
dent, Samza is designed to handle large amounts of state
in a fault-tolerant fashion by persisting state in a local
database and replicating state updates to Kafka. By de-
fault, Samza employs a key-value store for this purpose,
but other storage engines with richer querying capabilities
can be plugged in.

As illustrated in Figure 5, a Samza job represents one
processing step in an analytics pipeline and thus roughly
corresponds to a bolt in a Storm topology. In stark contrast
to Storm, however, where data is directly sent from one
bolt to another, output produced by a Samza job is always
written back to Kafka from where it can be consumed by
other Samza jobs. Although a single Samza job or a sin-
gle Kafka persistence hop may delay a message by only
a few milliseconds [8, 24], latency adds up and complex
analytics pipelines comprising several processing steps

DE GRUYTER OLDENBOURG

Figure 5: Data flow in a typical Samza analytics pipeline: Samza jobs
cannot communicate directly, but have to use a queueing system
such as Kafka as message broker.

eventually display higher end-to-end latency than compa-
rable Storm implementations.

However, this design also decouples individual pro-
cessing steps and thus eases development. Another ad-
vantage is that buffering data between processing steps
makes (intermediate) results available to unrelated par-
ties, e.g. other teams in the same company, and further
eliminates the need for a backpressure algorithm, since
there is no harm in the backlog of a particular job filling up
temporarily, given a reasonably sized Kafka deployment.
Since Samza processes messages in order and stores pro-
cessing results durable after each step, it is able to prevent
data loss by periodically checkpointing current progress
and reprocessing all data from that point onwards in case
of failure; in fact, Samza does not support a weaker guar-
antee than at-least-once processing, since there would be
virtually no performance gain in relaxing this guarantee.
While Samza does not provide exactly-once semantics, it
allows configuring the checkpointing interval and thus of-
fers some control over the amount of data that may be pro-
cessed multiple times in an error scenario.

3.3 Spark streaming

The Spark framework [39] (current stable version: 1.6.1) is
a batch-processing framework that is often mentioned as
the inofficial successor of Hadoop as it offers several bene-
fits in comparison, most notably a more concise API result-
ing in less verbose application logic and significant per-
formance improvements through in-memory caching: In
particular, iterative algorithms (e.g. machine learning al-
gorithms such as k-means clustering or logistic regression)
are accelerated by orders of magnitude, because data is
not necessarily written to and loaded from disk between

Unangemeldet
Heruntergeladen am | 18.05.18 18:30

DE GRUYTER OLDENBOURG

every processing step. In addition to these performance
benefits, Spark provides a variety of machine learning al-
gorithms out-of-the-box through the MLIib library. Origi-
nating from UC Berkeley in 2009, Spark was open-sourced
in 2010 and was donated to the Apache Software Founda-
tion in 2013 where it became a top-level project in Febru-
ary 2014. It is mostly written in Scala and has a Java,
Scala and Python API The core abstraction of Spark are
distributed and immutable collections called RDDs (re-
silient distributed datasets) that can only be manipulated
through deterministic operations. Spark is resilient to ma-
chine failures by keeping track of any RDD’s lineage, i.e.
the sequence of operations that created it, and check-
pointing RDDs that are expensive to recompute, e.g. to
HDFS [35]. A Spark deployment consists of a cluster man-
ager for resource management (and supervision), a driver
program for application scheduling and several worker
nodes to execute the application logic. Spark runs on top
of Mesos, YARN or in standalone mode in which case it
may be used in combination with ZooKeeper to remove the
master node, i.e. the cluster manager, as a single point of
failure.

Spark Streaming [40] shifts Spark’s batch-processing
approach towards real-time requirements by chunking the
stream of incoming data items into small batches, trans-
forming them into RDDs and processing them as usual.
It further takes care of data flow and distribution auto-
matically. Spark Streaming has been in development since
late 2011 and became part of Spark in February 2013. Be-
ing a part of the Spark framework, Spark Streaming had
alarge developer community and also a huge group of po-
tential users from day one, since both systems share the
same API and since Spark Streaming runs on top of a com-
mon Spark cluster. Thus, it can be made resilient to fail-
ure of any component [37] like Storm and Samza and fur-
ther supports dynamically scaling the resources allocated
for an application. Data is ingested and transformed into
a sequence of RDDs which is called DStream (discretised
stream) before processing through workers. All RDDs in

W. Wingerath et al., Real-time streaming analytics for Big Data = 191

a DStream are processed in order, whereas data items in-
side an RDD are processed in parallel without any order-
ing guarantees. Since there is a certain job scheduling de-
lay when processing an RDD, batch sizes below 50 ms tend
to be infeasible [10, section “Performance Tuning”]. Ac-
cordingly, processing an RDD takes around 100 ms in the
best case, although Spark Streaming is designed for la-
tency in the order of a few seconds [40, Sec. 2]. To prevent
data loss even for unreliable data sources, Spark Stream-
ing grants the option of using a write-ahead log (WAL) from
which data can be replayed after failure. State manage-
ment is realised through a state DStream that can be up-
dated through a DStream transformation.

3.4 Discussion

Table 1 sums up the properties of these systems in direct
comparison. Storm provides low latency, but does not of-
fer ordering guarantees and is often deployed providing
no delivery guarantees at all, since the per-tuple acknowl-
edgement required for at-least-once processing effectively
doubles messaging overhead. Stateful exactly-once pro-
cessing is available in Trident through idempotent state
updates, but has notable impact on performance and even
fault-tolerance in some failure scenarios. Samza is another
native stream processor that has not been geared towards
low latency as much as Storm and puts more focus on
providing rich semantics, in particular through a built-
in concept of state management. Having been developed
for use with Kafka in the Kappa Architecture, Samza and
Kafka are tightly integrated and share messaging seman-
tics; thus, Samza can fully exploit the ordering guaran-
tees provided by Kafka. Spark Streaming effectively uni-
fies batch and stream processing and offers a high-level
API, exactly-once processing guarantees and a rich set of
libraries, all of which can greatly reduce the complexity of
application development. However, being a native batch

Table 1: Apache Storm/Trident, LinkedIn’s Samza and Apache Spark Streaming in direct comparison.

Storm Trident

Samza Spark Streaming

strictest guarantee at-least-once exactly-once

achievable latency < 100 ms < 100 ms

state management yes yes (small state)
processing model one-at-a-time micro-batch
backpressure mechanism yes yes

ordering guarantees no between batches
elasticity yes yes

at-least-once exactly-once

< 100 ms <ls

yes yes
one-at-a-time micro-batch

not required (buffering) yes

within stream partitions ~ between batches
no yes

Unangemeldet
Heruntergeladen am | 18.05.18 18:30

192 — W. Wingerath et al., Real-time streaming analytics for Big Data

processor, Spark Streaming loses to its contenders with re-
spect to latency [20].

All these different systems show that low latency is in-
volved in a number of trade-offs with other desirable prop-
erties such as throughput, fault-tolerance, reliability (pro-
cessing guarantees) and ease of development. Through-
put can be optimised by buffering data and processing it
in batches to reduce the impact of messaging and other
overhead per data item, whereas this obviously increases
the in-flight time of individual data items. Abstract inter-
faces hide system complexity and ease the process of ap-
plication development, but sometimes also limit the pos-
sibilities of performance tuning. Similarly, rich processing
guarantees and fault-tolerance for stateful operations in-
crease reliability and make it easier to reason about se-
mantics, but require the system to do additional work, e.g.
acknowledgements and (synchronous) state replication.
Exactly-once semantics are particularly desirable and can
be implemented through combining at-least-once guaran-
tees with either transactional or idempotent state updates,
but they cannot be achieved for actions with side-effects
such as sending a notification to an administrator.

4 Further systems

In the last couple of years, a great number of stream pro-
cessors have emerged that all aim to provide high avail-
ability, fault-tolerance and horizontal scalability. Flink [2]
(formerly known as Stratosphere [15]) is a project that has
many parallels to Spark Streaming as it also originated
from research and advertises the unification of batch and
stream processing in the same system, providing exactly-
once guarantees for the stream programming model and
a high-level API comparable to that of Trident. In contrast
to Spark Streaming, though, Flink does not rely on batch-
ing for stream processing internally and thus delivers low
latency in the order of Storm or Samza. Project Apex [1]
is the open-sourced DataTorrent RTS core engine. Much
like Flink, Apex promises high performance in stream and
batch processing with low latency in streaming workloads.
As Spark/Spark Streaming, Flink and Apex are comple-
mented by a host of database, file system and other con-
nectors as well as pattern matching, machine learning
and other algorithms through additional libraries. A sys-
tem that is not publicly available is Twitter’s Heron [27].
Designed to replace Storm at twitter, Heron is completely
API-compatible to Storm, but improves on several aspects
such as backpressure, efficiency, resource isolation, mul-
titenancy, ease of debugging and performance monitor-
ing, but reportedly does not provide exactly-once deliv-

DE GRUYTER OLDENBOURG

ery guarantees. MillWheel [13] is an extremely scalable
stream processor that offers similar qualities as Flink and
Apex, e.g. state management and exactly-once seman-
tics. Millwheel and FlumeJava [19] are the execution en-
gines behind Google’s Dataflow cloud service for data pro-
cessing. Like other Google services and unlike most other
systems discussed in this section, Dataflow is fully man-
aged and thus relieves its users of the burden of deploy-
ment and all related troubles. The Dataflow programming
model [14] combines batch and stream processing and is
also agnostic of the underlying processing system, thus
decoupling business logic from the actual implementa-
tion. The runtime-agnostic API was open-sourced in 2015
and has evolved into the Apache Beam project (short for
Batch and stream, currently incubating) [7] to bundle it
with the corresponding execution engines (runners): As of
writing, Flink, Spark and the proprietary Google Dataflow
cloud service are supported. The only other fully managed
stream processing system apart from Google Dataflow that
we are aware of is IBM Infosphere Streams [17]. However,
in contrast to Google Dataflow which is documented to be
highly scalable (quota limit for customers: 1000 compute
nodes [9]), it is hard to find evidence for high scalability of
IBM Infosphere Streams; performance evaluations made
by IBM [21] only indicate it performs well in small deploy-
ments with up to a few nodes. Apache Flume [3] is a sys-
tem for efficient data aggregation and collection that is of-
ten used for data ingestion into Hadoop as it integrates
well with HDFS and can handle large volumes of incom-
ing data. But Flume also supports simple operations such
as filtering or modifying on incoming data through Flume
Interceptors [23, Chapter 7] which may be chained together
to form a low-latency processing pipeline.

The list of distributed stream processors goes on [16,
28, 33, 38], but since a complete discussion of the Big Data
stream processing landscape is out of the scope of this ar-
ticle, we do not go into further detail here.

5 Wrap-up

Batch-oriented systems have done the heavy lifting in
data-intensive applications for decades, but they do not
reflect the unbounded and continuous nature of data as
it is produced in many real-world applications. Stream-
oriented systems, on the other hand, process data as it ar-
rives and thus are oftentimes a more natural fit, though in-
ferior with respect to efficiency. While a growing number of
production deployments implementing the Lambda Archi-
tecture and emerging hybrid systems like Dataflow/Beam,
Flink or Apex document significant efforts to close the

Unangemeldet
Heruntergeladen am | 18.05.18 18:30

DE GRUYTER OLDENBOURG

gap between batch and stream-processing in both re-
search and practice, the Kappa Architecture completely es-
chews the traditional approach and even heralds the ad-
vent of purely stream-oriented Big Data analytics. How-
ever, whether at the core of novel system designs or as
a complement to existing architectures, horizontally scal-
able stream processors are gaining momentum as the re-
quirement for low latency has become a driving force in
modern Big Data analytics pipelines.

References

AUV~ WN -

10.

11.

12.

13.

14.

15.

16.

17.

. Apache apex. http://apex.incubator.apache.org/.

. Apache flink. https://flink.apache.org/.

. Apache Flume. https://flume.apache.org/.

. Apache Kafka. http://kafka.apache.org/.

. Apache Mesos. http://mesos.apache.org/.

. Apache Yarn. http://hadoop.apache.org/docs/stable/

hadoop-yarn/hadoop-yarn-site/YARN.html.

. Beamproposal — incubator wiki.

https://wiki.apache.org/incubator/BeamProposal.

. Comparisons: Spark streaming. http://samza.apache.org/

learn/documentation/0.7.0/comparisons/spark-streaming.html.
Accessed: 2016-01-12.

. Resource quotas. https://cloud.google.com/dataflow/quotas.

Accessed: 2016-01-14.

Spark streaming programming guide. https://spark.apache.
org/docs/1.6.0/streaming-programming-guide.html. Ac-
cessed: 2016-01-12.

D.). Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon
Hwang, W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tat-
bul, Y. Xing, and S. Zdonik. The design of the borealis stream
processing engine. In In CIDR, pages 277-289, 2005.

D.). Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A new
model and architecture for data stream management. The VLDB
Journal, 12(2):120-139, Aug. 2003.

T. Akidau, A. Balikov, K. Bekiroglu, et al. Millwheel: Fault-
tolerant stream processing at internet scale. In Very Large
Data Bases, pages 734-746, 2013.

T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.
Fernandez-Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry,

E. Schmidt, and S. Whittle. The dataflow model: A practical ap-
proach to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing. Proceedings
of the VLDB Endowment, 8:1792-1803, 2015.

A. Alexandrov, R. Bergmann, S. Ewen, et al. The stratosphere
platform for big data analytics. The VLDB Journal, 2014.

R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, et al. Pho-
ton: Fault-tolerant and scalable joining of continuous data
streams. In SIGMOD ’13, 2013.

A. Biem, E. Bouillet, H. Feng, et al. Ibm infosphere streams

for scalable, real-time, intelligent transportation services. In
Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data, 2010.

18.

19.

20.

21.

22.

23.

24,

25.

27.

28.

29.

30.

31.

32.

33.

34.

35.

W. Wingerath et al., Real-time streaming analytics for Big Data = 193

0. Boykin, S. Ritchie, I. 0’Connell, et al. Summingbird: A frame-
work for integrating batch and online mapreduce computa-
tions. PVLDB, 2014.

C. Chambers, A. Raniwala, F. Perry, et al. Flumejava: Easy, effi-
cient data-parallel pipelines. In PLDI 2010, 2010.

S. Chintapalli, D. Dagit, B. Evans, et al. Benchmarking stream-
ing computation engines at yahoo! http://yahooeng.tumblr.
com/post/135321837876/benchmarking-streaming-
computation-engines-at, December 2015. Accessed: 2016-
01-11.

I. Corporation. Of streams and storms. Technical report, IBM
Software Group, 2014.

Ericsson. Trident — benchmarking performance.
http://www.ericsson.com/research-blog/data-knowledge/
trident-benchmarking-performance/. Accessed: 2016-01-12.
M. Grover, T. Malaska, J. Seidman, and G. Shapira. Hadoop
Application Architectures. O’Reilly, Beijing, 2015.

J. Kreps. Benchmarking apache kafka: 2 million writes per
second (on three cheap machines). https://engineering.
linkedin.com/kafka/benchmarking-apache-kafka-2-million-
writes-second-three-cheap-machines. Accessed: 2016-01-12.
J. Kreps. Questioning the lambda architecture.
http://radar.oreilly.com/2014/07/questioning-the-lambda-
architecture.html, 7 2014. Accessed: 2015-12-17.

.). Kreps, N. Narkhede, and J. Rao. Kafka: a distributed messag-

ing system for log processing. In NetDB’11, 2011.

S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mit-
tal, J. M. Patel, K. Ramasamy, and S. Taneja. Twitter heron:
Stream processing at scale. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data,
SIGMOD 15, pages 239-250, New York, NY, USA, 2015. ACM.
W. Lam, L. Liu, S. Prasad, et al. Muppet: Mapreduce-style pro-
cessing of fast data. VLDB 2012, 2012.

D. Laney. 3D data management: Controlling data volume, veloc-
ity, and variety. Technical report, META Group, February 2001.
N. Marz. Preview of storm: The hadoop of realtime processing.
http://web.archive.org/web/20120509023348/http://tech.
backtype.com/preview-of-storm-the-hadoop-of-realtime-proce,
52012. Accessed: 2015-12-17.

N. Marz. History of apache storm and lessons learned.
http://nathanmarz.com/blog/history-of-apache-storm-and-
lessons-learned.html, 10 2014. Accessed: 2015-12-17.

N. Marz and). Warren. Big Data: Principles and Best Practices
of Scalable Realtime Data Systems. Manning Publications Co.,
Greenwich, CT, USA, 1st edition, 2015.

L. Neumeyer, B. Robbins, and A. Kesari. S4: Distributed stream
computing platform. In In Intl. Workshop on Knowledge Dis-
covery Using Cloud and Distributed Computing Platforms (KD-
Cloud, 2010.

D. Peng and F. Dabek. Large-scale incremental processing us-
ing distributed transactions and notifications. In Proceedings
of the 9th USENIX Symposium on Operating Systems Design
and Implementation, 2010.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies
(MSST), MSST ’10, pages 1-10, Washington, DC, USA, 2010.
IEEE Computer Society.

Unangemeldet
Heruntergeladen am | 18.05.18 18:30

http://apex.incubator.apache.org/
https://flink.apache.org/
https://flume.apache.org/
http://kafka.apache.org/
http://mesos.apache.org/
http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html
https://wiki.apache.org/incubator/BeamProposal
http://samza.apache.org/learn/documentation/0.7.0/comparisons/spark-streaming.html
http://samza.apache.org/learn/documentation/0.7.0/comparisons/spark-streaming.html
https://cloud.google.com/dataflow/quotas
https://spark.apache.org/docs/1.6.0/streaming-programming-guide.html
https://spark.apache.org/docs/1.6.0/streaming-programming-guide.html
http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
http://www.ericsson.com/research-blog/data-knowledge/trident-benchmarking-performance/
http://www.ericsson.com/research-blog/data-knowledge/trident-benchmarking-performance/
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
http://web.archive.org/web/20120509023348/http://tech.backtype.com/preview-of-storm-the-hadoop-of-realtime-proce
http://web.archive.org/web/20120509023348/http://tech.backtype.com/preview-of-storm-the-hadoop-of-realtime-proce
http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html
http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html

194 — W. Wingerath et al., Real-time streaming analytics for Big Data

36. D.Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous
queries over append-only databases. SIGMOD Rec., 21(2):321-
330, June 1992.

37. B.Venkat, P. Padmanabhan, A. Arokiasamy, and R. Up-
palapati. Can spark streaming survive chaos monkey?
http://techblog.netflix.com/2015/03/can-spark-streaming-
survive-chaos-monkey.html, Marriage 2015. Accessed: 2016-
01-11.

38. F.Yang, Z. Qian, X. Chen, I. Beschastnikh, L. Zhuang, L. Zhou,
and G. Shen. Sonora: A platform for continuous mobile-cloud
computing. Technical Report MSR-TR-2012-34, March 2012.

39. M. Zaharia, M. Chowdhury, T. Das, et al. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory clus-
ter computing. In Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation, NSDI’12,
pages 2-2, Berkeley, CA, USA, 2012. USENIX Association.

40. M. Zaharia, T. Das, H. Li, et al. Discretized streams: Fault-
tolerant streaming computation at scale. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, pages 423-438, New York, NY, USA, 2013.
ACM.

Bionotes

Wolfram Wingerath

Univ. of Hamburg, CS Dept.,

D-22527 Hamburg, Germany
wingerath@informatik.uni-hamburg.de

Wolfram Wingerath is a Ph.D. student under supervision of Norbert
Ritter teaching and researching at the University of Hamburg. He
was co-organiser of the BTW 2015 conference and has held work-
shop and conference talks on his published work on several occa-
sions. Wolfram is part of the databases and information systems
group and his research interests evolve around scalable NoSQL
database systems, cloud computing and Big Data analytics, but he
also has a background in data quality and duplicate detection. His
current work is related to real-time stream processing and explores
the possibilities of providing always-up-to-date materialised views
and continuous queries on top of existing non-streaming DBMSs.

Felix Gessert

Univ. of Hamburg, CS Dept.,

D-22527 Hamburg, Germany
gessert@informatik.uni-hamburg.de

Felix Gessert is a Ph.D. student at the databases and information
systems group at the University of Hamburg. His main research
fields are scalable database systems, transactions and web tech-

DE GRUYTER OLDENBOURG

nologies for cloud data management. His thesis addresses caching
and transaction processing for low-latency mobile and web applica-
tions. He is also founder and CEO of the startup Bagend that imple-
ments these research results in a cloud-based backend-as-a-service
platform. Since their product is based on a polyglot, NoSQL-centric
storage model, he is very interested in both the research and prac-
tical challenges of leveraging and improving these systems. He is
frequently giving talks on different NoSQL topics.

Steffen Friedrich

Univ. of Hamburg, CS Dept.,

D-22527 Hamburg, Germany
friedrich@informatik.uni-hamburg.de

Steffen Friedrich is a Ph.D. student working under supervision of
Norbert Ritter at the University of Hamburg. He has taken part

in several workshops and conferences, both as presenter (e.g.
DMC2014) and as co-organiser (BTW 2015). Being a member of the
databases and information systems group, Steffen is interested
in large-scale data management and data-intensive computing.
Furthermore, in his Master thesis, he also dealt with data quality
issues, specifically with duplicate detection in probabilistic data.
His research project is primarily concerned with benchmarking of
non-functional characteristics (e.g. consistency and availability) in
distributed NoSQL database systems.

Prof. Dr.-Ing. Norbert Ritter
Univ. of Hamburg, CS Dept.,
D-22527 Hamburg, Germany
ritter@informatik.uni-hamburg.de

i

Prof. Dr.-Ing. Norbert Ritter is a full professor of computer science
at the University of Hamburg, where he heads the databases and
information systems group. He received his Ph.D. from the Uni-
versity of Kaiserslautern in 1997. His research interests include
distributed and federated database systems, transaction process-
ing, caching, cloud data management, information integration and
autonomous database systems. He has been teaching NoSQL topics
in various courses for several years. Seeing the many open chal-
lenges for NoSQL systems, he and Felix Gessert have been orga-
nizing the annual Scalable Cloud Data Management Workshop
(www.scdm2015.com) for three years to promote research in this
area.

Unangemeldet
Heruntergeladen am | 18.05.18 18:30

http://techblog.netflix.com/2015/03/can-spark-streaming-survive-chaos-monkey.html
http://techblog.netflix.com/2015/03/can-spark-streaming-survive-chaos-monkey.html
http://www.scdm2015.com

	Real-time stream processing for Big Data
	1 Introduction
	2 Real-time analytics: Big Data in motion
	3 Real-time processors
	3.1 Storm
	3.1.1 Storm Trident

	3.2 Samza
	3.3 Spark streaming
	3.4 Discussion

	4 Further systems
	5 Wrap-up

