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Traditional Databases
The Problem: No Request — No Datal
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Periodic Polling for query result maintenance:
- inefficient
- slow



Real-time Databases
Always Up-to-Date With Database State
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Real-Time Queries for query result maintenance:
- efficient
— fast



Real-Time Query Maintenance
Matching Every Query Against Every Update

- Potential bottlenecks:

Number of queries
* Write throughput
* Query complexity

Similar processing for:
* Triggers

e ECATrules

* Materialized views
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Typical Maintenance Mechanisms (1/2)
Poll-and-Diff

* Local change monitoring: app servers detect local changes
— incomplete in multi-server deployment

* Poll-and-diff: global changes are discovered through polling
— staleness window

— read scalability?
|
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Typical Maintenance Mechanisms (2/2)
Change Log Tailing

* Every application server receives
all DB writes through Oplog database cluster (3 shards)

— write scalability? " Shard A ShardB  ShardC
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Real-Time Database Comparison
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* Query Subscription
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Related Work * Real-Time Query Processing
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InvaliDB: A Scalable Real-Time Database Design
System Model & Overview

End User

1. Query Subscription

2. Write Ingestion

3. Change Propagation
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InvaliDB: A Scalable Real-Time Database Design

System Model & Overview

Realtime-as-a-Service For
Heterogeneous Tenants:
» resource pooling: high
matching performance
& overall efficiency

multi-tenancy: low
provisioning overhead
per application server
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Real-Time & OLTP

End User
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Workloads Decoupled:

isolated failure domains

separated resource
requirements &
independent scaling
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o’

Pull-Based Database



InvaliDB: A Scalable Real-Time Database Design
Two-Dimensional Workload Partitioning
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InvaliDB: A Scalable Real-Time Database Design
Two-Dimensional Workload Partitioning




InvaliDB: A Scalable Real-Time Database Design
Two-Dimensional Workload Partitioning

Read & Write Scalability: @ Pluggable Query Engine:
» many concurrent users /l\ » legacy-compatibility

» high write throughput » multi-tenancy across
Q read scalability

» no single-server bottleneck databases
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Production System

Query Processing Event Layer Database

» low latency » low latency » typical RTDB expressiveness
» customizability » high per-node throughput » typical NoSQL datastore

» tried & tested » ease of deployment »  wildly popular
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Application Scenarios

1. Real-Time Queries

2. Query Caching
Future Work

* Extending Semantics

* Trade-Offs & Tuning

* New Use Cases
Summary & Contributions



Use Case 1: Real-Time Queries

An Easy-to-Use JavaScript API

var query = DB.Tweet.find()

| .matches('text', /my filter/)
.descending('createdAt’)
.1imit(10)
.offset(20);

Pull-Based Query

____________________________________________________________________
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Use Case 2: Consistent Query Caching
InvaliDB For Invalidating DB Queries

How to detect changes to |

query results:

,Give me the most popular
products that are in stock.”

$10.25- $179.99

Ends in 16:45:48
Up to 50% Off Handbags

$97.99
List: $449-95 (35% off)
Ends in 16:45:48

i i i 21 Save on Hitachi Gas Powered Leaf
Blower
Ships from and sold by Amazon.com.
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=

N

wt

$15.63 - $16.79

9% Claimed
BESTEK surge protector
Sold by BESTEK. and Fuffiled by Amazon.

Ends in 4:40:49

$18.66

Price: $39-99 (53% off)
18% Claimed Ends in 3:05:49

AUKEY Table Lamp. Touch Sensor

Frir iy 162 Bedside Lamp + Dimmable War.
Sold by Aukey Direct and Fulfiled by
Amazon.
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Use Case 2: Consistent Query Caching
Improving Pull-Based Query Performance
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InvaliDB

A Scalable Real-Time Database Design

Legacy-Compatible ]

Traditional Databases:
pull-based queries

[Scalable & Fast

/\ [ MongoDB Expressiveness |A
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