InvaliDB: Scalable Push-Based Real-Time Queries
on Top of Pull-Based Databases

Wolfram Wingerath, Felix Gessert, Norbert Ritter
ICDE 2020, Dallas/USA

-
" P
Universitit Hamburg ad quend

InvaliDB: Scalable Push-Based Real-Time Queries
on Top of Pull-Based Databases

nvali

g PRk e .
“%DB

Wolfram Wingerath, Felix Gessert, Norbert Ritter
ICDE 2020, Dallas/USA

-
" P
Universitdt Hamburg ad quend

Outline

Z Problem Statement
Intro & Research Question

Related Work
State of the Art & Open Issues

A Scalable RTDB Design
g:) InvaliDB: Concept & Prototype

‘9’ Discussion
= Applications & Outlook

Pull vs. Push

Traditional DB Queries
Why Real-Time Queries?
How to Provide Them?

Traditional Databases
The Problem: No Request — No Datal

What'’s the

current state? D A @

circular shapes ——

00l =

Periodic Polling for query result maintenance:
- inefficient
- slow

Real-time Databases
Always Up-to-Date With Database State

circular shapes A

10 0}

Real-Time Queries for query result maintenance:
- efficient
— fast

Real-Time Query Maintenance
Matching Every Query Against Every Update

- Potential bottlenecks:

Number of queries
* Write throughput
* Query complexity

Similar processing for:
* Triggers

e ECATrules

* Materialized views

R
——
T D—
Is match?
& %
Was match? Was match?

%] ©

R ? & £
® (+) (})

change add remove none

Outline

Problem Statement e Real-Time Data?bases
Z Intro & Research Question * Poll-and-Diff
* Oplog Tailing
* System Comparison
Related Work . Meteor
State of the Art & Open Issues RethinkDB
* Parse
A Scalable RTDB Design . Fireb_ase
% InvaliDB: Concept & Prototype * InvaliDB

-‘@’- Discussion
Applications & Outlook

Typical Maintenance Mechanisms (1/2)
Poll-and-Diff

* Local change monitoring: app servers detect local changes
— incomplete in multi-server deployment

* Poll-and-diff: global changes are discovered through polling
— staleness window

— read scalability?
|

repeat query every 10 seconds
forward
monitor ' _____ CRUD & _ _ _
incoming 1 /
writes pp server : pp server :
I

- s s s e o - am e s o o -

Typical Maintenance Mechanisms (2/2)
Change Log Tailing

* Every application server receives
all DB writes through Oplog database cluster (3 shards)

— write scalability? " Shard A ShardB ShardC

\
|
|
I
|
!

o monitor
= change log
= ‘ |
I I
] app server ¢ app server
{ } < pushrelevant events -1 e = /
/\ writes / \

Real-Time Database Comparison

nvali

\ x . : Jnv
METE\R fRethinkoB @) Parse) Firebase Mo p

Poll-and-Diff Change Log Tailing Unknown 2-D Partitioning

Write Scalability \/ X X X X \/

Read Scalability X v v v ? v

(100k connections)

Outline

e System Model & Overview
* Query Subscription
* Write Ingestion
 Change Propagation
Related Work * Real-Time Query Processing
e Two-Dimensional
Workload Partitioning

Problem Statement

A Scalable RTDB Design
% InvaliDB: Concept & Prototype

-‘w’- Discussion

InvaliDB: A Scalable Real-Time Database Design
System Model & Overview

End User

1. Query Subscription

2. Write Ingestion

3. Change Propagation

(&) &]

Lt I tal) =
¥

T —— — — —

InvaliDB Cluster Event Layer Application Server Pull-Based Database

InvaliDB: A Scalable Real-Time Database Design

System Model & Overview

Realtime-as-a-Service For
Heterogeneous Tenants:
» resource pooling: high
matching performance
& overall efficiency

multi-tenancy: low
provisioning overhead
per application server

v

Real-Time & OLTP

End User

4

4

{} .

Workloads Decoupled:

isolated failure domains

separated resource
requirements &
independent scaling

o
>

)

InvaliDB Cluster Event Layer

Application Server

o’

Pull-Based Database

InvaliDB: A Scalable Real-Time Database Design
Two-Dimensional Workload Partitioning

N

InvaliDB: A Scalable Real-Time Database Design
Two-Dimensional Workload Partitioning

InvaliDB: A Scalable Real-Time Database Design
Two-Dimensional Workload Partitioning

Read & Write Scalability: @ Pluggable Query Engine:
» many concurrent users /l\ » legacy-compatibility

» high write throughput » multi-tenancy across
Q read scalability

» no single-server bottleneck databases

' query } | query } ' query }
artition 1 artition 2! artition 3!
:P | :p | :p | “ qp

e = 1l
/ [| |
| |) |
| : 1| L
‘ | : |
\ | . |
\
- yh
- -)
e | V "
|
| | |
|
| |
|
| ! |
1 | | |
\ | }__I
| | |
- s
|
. [
|

[write
:partition 1 :

I write
:partition 21

write scalability
write
partition 3 :

P
<«

Production System

Query Processing Event Layer Database

» low latency » low latency » typical RTDB expressiveness
» customizability » high per-node throughput » typical NoSQL datastore

» tried & tested » ease of deployment » wildly popular

5> SToRM &8 redis ‘mongo

————-—- i —

'###l (M),

pg 0
l # ¥ #) =

e -

O

InvaliDB Cluster Event Layer Application Server Pull-Based Database

Outline

Problem Statement
Related Work

A Scalable RTDB Design

:9’ Discussion
= Applications & Outlook

Application Scenarios

1. Real-Time Queries

2. Query Caching
Future Work

* Extending Semantics

* Trade-Offs & Tuning

* New Use Cases
Summary & Contributions

Use Case 1: Real-Time Queries

An Easy-to-Use JavaScript API

var query = DB.Tweet.find()

| .matches('text', /my filter/)
.descending('createdAt’)
.1imit(10)
.offset(20);

Pull-Based Query

__

__

Use Case 2: Consistent Query Caching
InvaliDB For Invalidating DB Queries

How to detect changes to |

query results:

,Give me the most popular
products that are in stock.”

$10.25- $179.99

Ends in 16:45:48
Up to 50% Off Handbags

$97.99
List: $449-95 (35% off)
Ends in 16:45:48

i i i 21 Save on Hitachi Gas Powered Leaf
Blower
Ships from and sold by Amazon.com.
e v ke e ol 1961

l See details I ‘ Add to Cart

=

N

wt

$15.63 - $16.79

9% Claimed
BESTEK surge protector
Sold by BESTEK. and Fuffiled by Amazon.

Ends in 4:40:49

$18.66

Price: $39-99 (53% off)
18% Claimed Ends in 3:05:49

AUKEY Table Lamp. Touch Sensor

Frir iy 162 Bedside Lamp + Dimmable War.
Sold by Aukey Direct and Fulfiled by
Amazon.
ol e e 57 669
Choose options I l Add to Cart

Use Case 2: Consistent Query Caching
Improving Pull-Based Query Performance

200 ; : 150k

125k}

=
ul
(=}
-
.
-
o
o
~
T

100} _______________________ ______________________ e ______________________ 75kt

50k}

Mean latency (ms)
Throughput (ops/s)

wul
o

. , :
?00 600 1200 1800 2400 3000 00 600 1200 1800 2400 3000
Connections Connections

[H Quaestor @ ¢ CDN-only HH Uncachedl [H Quaestor ¢-¢ CDN-only

| O | Uncachedl

Latency Throughput

Quaestor: Query Web Caching for
Database-as-a-Service Providers, VLDB *17.

InvaliDB

A Scalable Real-Time Database Design

Legacy-Compatible]

Traditional Databases:
pull-based queries

[Scalable & Fast

/\ [MongoDB Expressiveness |A

) [>

! Conﬂnuousl
InvaliDB:

push-based queries {f }

[Developer-friendly

wolle@bagend.com

