
InvaliDB: Scalable Push-Based Real-Time Queries
on Top of Pull-Based Databases

Wolfram Wingerath, Felix Gessert, Norbert Ritter
ICDE 2020, Dallas/USA



InvaliDB: Scalable Push-Based Real-Time Queries
on Top of Pull-Based Databases

Wolfram Wingerath, Felix Gessert, Norbert Ritter
ICDE 2020, Dallas/USA



Outline

• Pull vs. Push 
• Traditional DB Queries
• Why Real-Time Queries?
• How to Provide Them?

Discussion
Applications & Outlook

Problem Statement
Intro & Research Question

Related Work
State of the Art & Open Issues

…

∑

A Scalable RTDB Design
InvaliDB: Concept & Prototype



Traditional Databases
The Problem: No Request – No Data!

circular shapes

What‘s the 
current state?

Periodic Polling for query result maintenance:
→ inefficient
→ slow



Real-time Databases
Always Up-to-Date With Database State

circular shapes

Real-Time Queries for query result maintenance:
→ efficient
→ fast



Real-Time Query Maintenance
Matching Every Query Against Every Update

→ Potential bottlenecks:
• Number of queries
• Write throughput
• Query complexity

Similar processing for:
• Triggers
• ECA rules
• Materialized views



Outline

• Real-Time Databases
• Poll-and-Diff
• Oplog Tailing

• System Comparison
• Meteor
• RethinkDB
• Parse
• Firebase
• InvaliDB

Discussion
Applications & Outlook

Problem Statement
Intro & Research Question

Related Work
State of the Art & Open Issues

…

∑

A Scalable RTDB Design
InvaliDB: Concept & Prototype



?
app server

Typical Maintenance Mechanisms (1/2)
Poll-and-Diff

• Local change monitoring: app servers detect local changes
→ incomplete in multi-server deployment

• Poll-and-diff: global changes are discovered through polling
→ staleness window
→ read scalability?

monitor
incoming

writes

CRUD

repeat query every 10 seconds

forward
CRUD

!

app server



change log broadcast

Shard BShard A Shard C

database cluster (3 shards)

writes

monitor
change log

push relevant events

Typical Maintenance Mechanisms (2/2)
Change Log Tailing

app server app server

• Every application server receives
all DB writes through oplog
→ write scalability? 



Poll-and-Diff Change Log Tailing Unknown 2-D Partitioning

Write Scalability ✓     ✓

Read Scalability  ✓ ✓ ✓ ?
(100k connections)

✓

Composite 
Filters (AND/OR) ✓ ✓ ✓ ✓ 

(AND In Firestore)
✓

Sorted Queries ✓ ✓ ✓  
(single attribute)

✓

Limit ✓ ✓ ✓  ✓ ✓

Offset ✓ ✓   
(value-based)

✓

Self-Maintaining
Queries ✓ ✓    ✓

Event Stream 
Queries ✓ ✓ ✓ ✓ ✓ ✓

Real-Time Database Comparison



Outline

• System Model & Overview
• Query Subscription
• Write Ingestion
• Change Propagation

• Real-Time Query Processing
• Two-Dimensional 

Workload Partitioning

Discussion
Applications & Outlook

Problem Statement
Intro & Research Question

Related Work
State of the Art & Open Issues

…

∑

A Scalable RTDB Design
InvaliDB: Concept & Prototype



InvaliDB: A Scalable Real-Time Database Design
System Model & Overview

Event LayerInvaliDB Cluster Application Server Pull-Based Database

End User

1. Query Subscription

2. Write Ingestion

3. Change Propagation



InvaliDB: A Scalable Real-Time Database Design
System Model & Overview

 Real-Time & OLTP 
Workloads Decoupled: 

 isolated failure domains

 separated resource
requirements & 
independent scaling

End User

 Realtime-as-a-Service For
Heterogeneous Tenants: 

 resource pooling: high 
matching performance
& overall efficiency

 multi-tenancy: low
provisioning overhead
per application server

Event LayerInvaliDB Cluster Application Server Pull-Based Database



InvaliDB: A Scalable Real-Time Database Design
Two-Dimensional Workload Partitioning



w
ri

te
p

ar
ti

ti
o

n
1

w
ri

te
p

ar
ti

ti
o

n
2

w
ri

te
p

ar
ti

ti
o

n
3

InvaliDB: A Scalable Real-Time Database Design
Two-Dimensional Workload Partitioning

query
partition 1

query
partition 2

query
partition 3



 Pluggable Query Engine: 

 legacy-compatibility

 multi-tenancy across
databases

w
ri

te
p

ar
ti

ti
o

n
1

w
ri

te
p

ar
ti

ti
o

n
2

w
ri

te
p

ar
ti

ti
o

n
3

InvaliDB: A Scalable Real-Time Database Design
Two-Dimensional Workload Partitioning

query
partition 1

query
partition 2

query
partition 3

read scalability

w
ri

te
sc

al
ab

ili
ty

 Read & Write Scalability: 

 many concurrent users

 high write throughput

 no single-server bottleneck



InvaliDB Cluster Pull-Based DatabaseEvent Layer Application Server

Production System

o Query Processing

 low latency

 customizability

 tried & tested

o Event Layer

 low latency

 high per-node throughput

 ease of deployment

o Database

 typical RTDB expressiveness

 typical NoSQL datastore

 wildly popular



Outline

• Application Scenarios
1. Real-Time Queries
2. Query Caching

• Future Work
• Extending Semantics
• Trade-Offs & Tuning
• New Use Cases

• Summary & Contributions

Discussion
Applications & Outlook

Problem Statement
Intro & Research Question

Related Work
State of the Art & Open Issues

…

∑

A Scalable RTDB Design
InvaliDB: Concept & Prototype



var query = DB.Tweet.find()
.matches('text', /my filter/)
.descending('createdAt')
.limit(10)
.offset(20);

query.resultList(result => ...);

query.resultStream(result => ...);

Pull-Based Query

Real-Time Query

Use Case 1: Real-Time Queries
An Easy-to-Use JavaScript API



How to detect changes to
query results:
„Give me the most popular
products that are in stock.“

Add

Change

Remove

Use Case 2: Consistent Query Caching
InvaliDB For Invalidating DB Queries



Latency Throughput

Use Case 2: Consistent Query Caching
Improving Pull-Based Query Performance



Traditional Databases: 
pull-based queries

InvaliDB: 
push-based queries

MongoDB Expressiveness

Developer-friendly

Scalable & Fast

InvaliDB
A Scalable Real-Time Database Design

Legacy-Compatible

Inefficient

Continuous
Laggy

wolle@baqend.com


