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ABSTRACT
Traditional databases are optimized for pull-based queries,
i.e. they make information available in direct response to
client requests. While this access pattern is adequate for
mostly static domains, it requires inefficient and slow work-
arounds (e.g. periodic polling) when clients need to stay
up-to-date. Acknowledging reactive and interactive work-
loads, modern real-time databases such as Firebase, Me-
teor, and RethinkDB proactively deliver result updates to
their clients through push-based real-time queries. However,
current implementations are only of limited practical rele-
vance, since they are incompatible with existing technology
stacks, fail under heavy load, or do not support complex
queries to begin with. To address these issues, we propose
the system design InvaliDB which combines linear read and
write scalability for real-time queries with superior query
expressiveness and legacy compatibility. We compare In-
valiDB against competing system designs to emphasize the
benefits of our approach. To validate our claims of linear
scalability, we further present an experimental evaluation of
the InvaliDB prototype that has been serving customers at
the Database-as-a-Service company Baqend since July 2017.
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1. INTRODUCTION
Many of today’s web applications notify users of status

updates and other events in realtime. But even though
more and more usage scenarios revolve around the inter-
action between users, building applications that detect and
publish changes with low latency remains notoriously hard
even with state-of-the-art data management systems. While
traditional database systems (or short “databases”) excel at
complex queries over historical data [37], they are inherently
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pull-based and therefore ill-equipped to push new informa-
tion to clients [67]. Systems for managing data streams, on
the other hand, are natively push-oriented and thus facil-
itate reactive behavior [35]. However, they do not retain
data indefinitely and are therefore not able to answer his-
torical queries. The separation between these two system
classes gives rise to both high complexity and high main-
tenance costs for applications that require persistence and
real-time change notifications at the same time [77].

In this paper, we present the system design InvaliDB for
bridging the gap between pull-based database and push-
based data stream management: InvaliDB is a real-time
database built on top of a pull-based (NoSQL) database,
supports the query language of the underlying datastore
for both pull- and push-based queries, and scales linearly
with reads and writes through a scheme for two-dimensional
workload distribution.

1.1 Real-Time Databases: Open Challenges
Numerous system designs have been proposed to provide

collection-based semantics for pull-based and push-based
queries alike: Subsumed under the term “real-time data-
bases”1 [69] [81], systems like Firebase, Meteor, and Re-
thinkDB provide push-based real-time queries that do not
only deliver a single result upon request, but also a contin-
uous stream of informational updates thereafter. Like tra-
ditional database systems, real-time databases store consis-
tent snapshots of domain knowledge. But like stream man-
agement systems, they let clients subscribe to long-running
queries that push incremental updates.

In concept, real-time databases thus extend traditional
database systems as they follow the same semantics, but
provide an additional mode of access. In practice, though,
there is no established scheme how to actually build a real-
time database on top of a traditional database system. Ex-
isting real-time databases have been built from scratch and
consequently do not inherit the rich feature set and stabil-
ity that some pull-based systems have gained over decades
of development. To date, every push-based real-time query
mechanism fails in at least one of the following challenges:

C1 Scalability. Serving real-time queries is a resource-
intensive process which requires continuous monitor-

1In the past, the term “real-time databases” has been used
to reference specialized pull-based databases that produce
an output within strict timing constraints [60] [1] [27]; we
do not share this notion of real-time databases.
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ing of all write operations that might possibly affect
query results. To sustain more demanding workloads
than a single machine could handle, real-time databa-
ses typically partition the set of queries across server
nodes. As each node is only responsible for a sub-
set of all queries in this scheme, most systems can
scale with the number of concurrent queries. However,
we are not aware of any real-time database that sup-
ports partitioning the write stream as well. Thus, re-
sponsibility for individual queries is not shared among
nodes and overall system throughput remains bottle-
necked by single-machine capacity: Queries become
intractable as soon as one of the nodes is not able to
keep up with processing the entire write stream.

C2 Expressiveness. The majority of real-time query
APIs are limited in comparison to their ad hoc counter-
parts. Even relatively simple queries are often unsup-
ported or have severe restrictions; for example, some
implementations do not offer filter composition with
AND/OR, do not allow ordering by multiple attributes,
or support limit, but no offset clauses. The lack of such
basic functionality on the database side necessitates in-
efficient workarounds in the application code, even for
moderately sophisticated data access patterns.

C3 Legacy Support. Today’s real-time databases do not
follow standards regarding data model or query lan-
guage, implement custom protocols for pull-based and
push-based data access alike, and exhibit interfaces
that are incompatible among different vendors. While
the complete lack of support for legacy interfaces may
be acceptable in the development of new applications,
it complicates the adoption of push-based queries for
existing software.

We argue that neither of these limitations is inherent to
the challenge of providing push-based real-time queries over
database collections. To prove our point, we present the de-
sign and implementation of a system for real-time queries
that is built on top of the pull-based NoSQL database Mon-
goDB, supports sorted filter queries over single collections
for pull- and push-based execution alike, and scales linearly
with reads and writes.

2. CONTRIBUTIONS & OUTLINE
Our contributions in this paper are threefold. First in Sec-

tion 3, we present a discussion of push-based query mech-
anisms in modern data management to expound why real-
time databases deserve distinction in a separate system class
next to pull-based database and push-based data stream
management systems. By identifying the limitations of the
current real-time query mechanisms, we derive important
insights for the design of our own real-time database system
and further motivate our work. As our second contribu-
tion in Section 5, we propose the real-time database design
InvaliDB that solves challenges C1, C2, and C3 through a
unique combination of characteristics: InvaliDB sets itself
apart from existing system designs through (1) a novel two-
dimensional workload partitioning scheme for linear scala-
bility, (2) support for expressive real-time queries including
sorted filter queries with limit and offset, (3) a pluggable
query engine to achieve database independence, and (4) a
separation of concerns between the primary storage sub-
system and the subsystem for real-time features, effectively

decoupling failure domains and enabling independent scal-
ing for both. As our third contribution in Sections 6 and
7, we present an experimental evaluation of our InvaliDB
prototype that has been used in production as part of the
Database-as-a-Service (DBaaS) offering at Baqend [7] since
July 2017. Our experiments confirm that InvaliDB’s perfor-
mance scales linearly with the number of matching nodes,
both in terms of sustainable write throughput and the num-
ber of concurrent real-time queries. The results further indi-
cate that our InvaliDB implementation exhibits consistently
low latency even under high per-node load, irrespective of
the number of nodes employed for query matching. We dis-
cuss our findings in Section 8 and conclude in Section 9.

3. RELATED WORK: PUSH-BASED
ACCESS IN DATA MANAGEMENT

Given the trend towards reactivity in modern applica-
tions, data management systems of all classes have come
to provide push-based data access in one form or another.
In Table 1, we delineate real-time databases from traditional
databases on the one side and systems for stream manage-
ment and processing on the other.

Database
Management

Real-Time
Databases

Data Stream
Management

Stream
Processing

Primitive persistent collections ephemeral streams

Processing one-time
one-time +
continuous

continuous

Access random
random +
sequential

sequential (single-pass)

Data structured
structured,
unstructured

Table 1: An overview over data access in data management.

Traditional (SQL) database management systems are
optimized for expressive random access queries over persis-
tent data collections. They provide a wealth of features
for applications based on request-response interaction, but
maintaining query results on a per-user basis is not what
they have been designed for. Few SQL systems offer ac-
tive features beyond triggers [28] or event-condition-action
(ECA) rules [65] and existing functionality for query result
maintenance is almost exclusively employed for optimizing
pull-based query performance (e.g. materialized views [23]
[36] or change notification mechanisms [56] [51] [59]).

To warrant low-latency updates in quickly evolving do-
mains, systems for data stream management [35] [73]
break with the idea of maintaining a persistent data repos-
itory. Instead of random access queries on static collec-
tions, they perform sequential, long-running queries over
data streams. Systems for data stream management are
thus natively push-based and generate new output when-
ever new data becomes available. Through complex event
processing (CEP) [24], some systems even extract informa-
tion not explicitly encoded in the data items themselves, but
rather in the context between them. Even for sophisticated
query engines, though, data is only available for processing
in one single pass, because data streams are conceptually un-
bounded sequences of data items and therefore infeasible to
retain indefinitely. In consequence, queries over streams are
confined to data arriving after query activation and query-
ing data that is rooted in the past is inefficient or impossible
without a second system for persistent data management.

Unlike data stream management systems that are mostly
intended for analyzing structured information through
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declarative query languages, systems for stream process-
ing [73] expose generic and imperative programming inter-
faces to work with structured, semi-structured, and entirely
unstructured data. Rather than yet another approach for
querying data, stream processing can thus be seen as the
latency-oriented counterpart to batch processing. Some sys-
tems do provide declarative query interfaces and even con-
tinuous result updates, but they typically follow stream-
based rather than collection-based query semantics (e.g.
Flink’s dynamic tables [39]) and are very heavyweight, since
every query is deployed as a separate application in the dis-
tributed computing cluster (cf. Spark’s structured stream-
ing [52]). Serving many concurrent users in ad hoc fashion
is therefore simply not feasible.

Real-time databases combine principles from both da-
tabase and data stream management as they evaluate que-
ries over historical data repositories, but also continuously
update the query results. Both the architectures and client
APIs of real-time databases reflect that facts can change
over time and that the system may have to enhance or cor-
rect issued information. In contrast to stream-based queries,
however, real-time queries are formulated as though they
were evaluated on static data collections, even though they
deliver a continuous stream of updates to the query result.

3.1 Real-Time Query Mechanisms
Different approaches are used in practice for maintaining

query results within real-time databases. As implied by the
name, poll-and-diff relies on reevaluating a database que-
ry periodically (“poll”) and comparing the newly obtained
result against the last-known result (“diff”) in order to com-
pute result changes which can be sent to the subscribed
clients. To the best of our knowledge, the first and only
real-time database to implement this approach is Meteor [50]
which uses MongoDB [54] as its internal data storage. As
a great advantage, poll-and-diff inherits the query expres-
siveness of the underlying database for real-time queries by
using it for query execution. However, it also suffers from
potential staleness only bounded by the polling interval (de-
fault in Meteor: 10 seconds). But even for applications that
can tolerate multi-second lags, poll-and-diff becomes infea-
sible when many real-time queries are active concurrently,
because each one of them induces processing overhead on the
database system through frequent reexecution. In numbers,
1 000 active real-time query subscriptions in Meteor result
in an average of 100 pull-based queries per second executed
against the underlying database system. For each of these
queries, a result has to be (1) assembled and (2) serialized
by the database, then (3) be sent to the Meteor server where
it is (4) deserialized again, so that it can finally (5) be an-
alyzed for relevant changes. While this may be tractable in
some cases, it quickly gets prohibitive when results are large
or when the database is under high load already (e.g. due
to high write throughput).

Seeing the considerable downsides of poll-and-diff, many
systems employ an alternative approach with a different set
of trade-offs: Log tailing is the current default mechanism
for real-time queries in Meteor and variants of it are used for
real-time queries in Parse [9] (based on MongoDB as well)
and RethinkDB [2] (custom-built database with MongoDB-
like capabilities). The idea behind log tailing is to use the
underlying database’s replication log for change discovery:
To make sure that no relevant write operation is missed,

Poll-and-Diff Log Tailing Firebase / InvaliDB
Meteor RethinkDB Parse Firestore Baqend

Scales With
3 7 7 7 7 3Write TP

Scales With
7 3 3 3 � 3# Queries

(100k connections)

Lag-Free
7 3 3 3 3 3Notifications

Composition
3 3 3 3 � 3(AND/OR)

(no OR in Firebase)

Ordering 3 3 3 7 � 3
(single attribute)

Limit 3 3 3 7 3 3
Offset 3 3 7 7 � 3

(value-based)

Table 2: A direct comparison of the collection-based real-
time query implementations detailed in this paper.

every application server subscribes to the complete data-
base change log, computes result changes, and pushes them
to subscribed clients. Since changes are immediately propa-
gated in this setup, log tailing eliminates the staleness inher-
ent to poll-and-diff and makes periodic polling obsolete. At
the same time, though, it introduces the application server
as a bottleneck for writes, since each application server has
to keep up with the combined throughput of all database
partitions. As a consequence, the underlying database can
be partitioned to scale with write throughput, but change
monitoring within the application server cannot.

Some proprietary systems use undisclosed mechanisms for
query result maintenance. Prominently, Firebase and its
successor Firestore [8] are Google services for developing
web and mobile applications with real-time query function-
ality. Even though Firestore provides slightly more ad-
vanced querying capabilities compared to the original Fire-
base [25] [29] (e.g. chaining filter conditions through a log-
ical AND), both services only support simplistic queries (e.g.
there is no logical OR [32]). Firebase only supports sorting by
a single attribute, whereas Firestore allows multi-attribute
sorting for certain (albeit not all) query types [31]. Neither
service supports regex expressions or comparable content-
based filters [32]. In consequence, denormalizing the data
model or evaluating queries in the client is often the only
way to compensate the lack of expressiveness [40] [63] [20].

Practical Considerations. Under log tailing, high
write throughput is known to cause extreme CPU load [66]
and load spikes reportedly saturate and even take down the
entire application [47] [79]. To address this particular issue,
Meteor uses poll-and-diff as a fallback strategy whenever log
tailing becomes infeasible [49], but poll-and-diff becomes in-
feasible as well when there are more than a few active real-
time queries [41]. Google’s real-time database services sim-
ilarly bar themselves from write-heavy applications: Fire-
base allows at most 100 000 parallel client connections and
1 000 writes/s across the entire data set [29], while Firestore
maxes out at only 500 writes/s per collection and even only
1 write/s per document [30]. We refer to our data manage-
ment survey in [78] for details.

Direct Comparison. Table 2 sums up the query capa-
bilities of the approaches described above, comparing them
against our system design InvaliDB. Meteor is the only sys-
tem featuring two different real-time query implementations:
Poll-and-diff scales with write throughput and log tailing

3



end user

InvaliDB client
(app server) database

InvaliDB cluster
(query matching)

         DB
nvaliI

}{+

2 1event layer

}{

}{

3

Figure 1: InvaliDB separates responsibilities for data storage (database) from real-time query matching (InvaliDB cluster).
The InvaliDB client is located at the application server and acts as a broker between these two and subscribed clients.

scales with the number of concurrent real-time queries –
neither scales with both. RethinkDB and Parse provide
real-time queries with log tailing as well and therefore also
collapse under heavy write load: The lack of write stream
partitioning represents a scale-prohibitive bottleneck in the
designs of all these systems. While the technology stacks
behind Firebase and Firestore are not disclosed, hard scal-
ability limits for write throughput and parallel client con-
nections are documented. Further, it is apparent that both
services mitigate scalability issues by simply denying com-
plex queries to begin with: In the original Firebase model,
composite queries are impossible and sorted queries are only
allowed with single-attribute ordering keys. Even the more
advanced Firestore queries lack support for disjunction of
filter expressions (OR) and only provide limited options for
filter conjunction (AND). All systems in the comparison apart
from Firebase offer composite filter conditions for real-time
queries, but differ in their support for ordered results: Me-
teor supports sorted real-time queries with limit and offset,
RethinkDB supports limit (but no offset) [48], and Parse
does not support ordered real-time queries at all [70].

In summary, we are not aware of any system that car-
ries non-trivial pull-based query features to the push-based
paradigm without severe compromises: Developers always
have to weigh a lack of expressiveness against the presence
of hard scalability bottlenecks. Through the system design
InvaliDB proposed in this paper, we show that expressive
real-time queries and scalability can go hand-in-hand.

4. PRIOR WORK & FURTHER READING
To provide pointers for additional reading and to avoid

the allegation of self-plagiarism, we want to make explicit
where this paper draws content from and in what ways it
relates to our earlier written work. First, this paper ex-
tends the ICDE 2020 poster abstract in which InvaliDB
was initially presented [76]. All sections of this paper con-
tain revised material from the PhD thesis [72] in the con-
text of which InvaliDB has been developed and which has
spawned several other publications on related topics. The
introduction in Section 1, the related work part in Sec-
tion 3, the description of our MongoDB-based real-time
query engine in Section 5.4, the discussion in Section 8,
and the conclusion in Section 9 contain revised material
from tutorial and demo abstracts [74] [75] [77]. We present

a vastly extended version of our related work (cf. Sec-
tion 3) in [78]. Our VLDB 2017 industry paper [33] fur-
ther details how InvaliDB is used at Baqend to enable a
consistent query caching scheme that improves through-
put and latency for common pull-based database queries
by more than an order of magnitude. While the VLDB pa-
per addresses our approach to improving query performance
of a traditional pull -based database, this paper explores
how we also provide push-based real-time queries on top.

5. INVALIDB: A SCALABLE SYSTEM
DESIGN FOR REAL-TIME DATABASES

InvaliDB is a real-time database design that provides
push-based access to data through collection-based real-time
queries. Its name is derived from one of its usages: Within
the Quaestor architecture [33] for consistent caching of que-
ry results, InvaliDB is used to invalidate cached database
queries once they become stale, i.e. it detects result changes
and purges the corresponding result caches in timely fashion.

Similar to some of the systems discussed above (e.g. Me-
teor and Parse), InvaliDB relies on a pull-based database
system for data storage. Client applications only interact
with the application servers that execute writes as well as
pull- and push-based queries on their behalf (see [75] for de-
tails on the query interface that unifies pull- and push-based
query execution). As an important distinction to state-of-
the-art real-time databases, however, InvaliDB separates the
query matching process from all other system components:
The real-time component (InvaliDB cluster) is deployed
as a separate system, isolated from the application servers,
and it can only be reached through an asynchronous message
broker (event layer). To enable real-time queries, an ap-
plication server only runs a lightweight process (InvaliDB
client) which relays messages between the end users, the
database, and the InvaliDB cluster. The expensive task of
matching active real-time queries against incoming writes,
on the other hand, is offloaded to the InvaliDB cluster. By
thus decoupling the real-time query workload from the main
application logic, even overburdening the real-time compo-
nent cannot take down the OLTP system: In the worst-case
scenario, the InvaliDB cluster is taken down and requests
sent against the event layer remain unanswered.

Figure 1 sketches the message flow between end user, ap-
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Figure 2: InvaliDB partitions both queries and writes, so
that any given matching node is only responsible for match-
ing few queries against some of the incoming writes.

plication servers, database, and the InvaliDB cluster. Even
though only a single application server is illustrated, it
should be noted that InvaliDB is multi-tenant, so that an
InvaliDB cluster can serve many application servers at the
same time. In order to subscribe to a real-time query, a web
or mobile application sends a subscription (1) request with
a unique identifier2 to an application server. The applica-
tion server then executes the query against the database to
produce the initial result, i.e. the currently matching data
objects. This result and a representation of the query itself
are asynchronously handed to the InvaliDB cluster which
then activates the query and sends out the initial result (see
below). From then on, the InvaliDB cluster maintains an
up-to-date representation of the query result. Similar to a
real-time query subscription, a request for real-time query
cancellation (not illustrated) is asynchronously passed to
the InvaliDB cluster, so that the given query can be deacti-
vated and does not consume further resources. Conversely,
TTL extension requests are periodically issued by the appli-
cation server to avoid expiration of still-active queries. For
every write (2) which is executed at the database, the after-
images (i.e. fully specified representations) of the written
entities are handed to the InvaliDB cluster. Every after-
image is then matched against all active real-time queries
to detect changes to currently maintained results. As a re-
sponse to a real-time query subscription, the InvaliDB clus-
ter sends out a stream of change notifications (3) each
of which represents a transition of the corresponding query

2The client generates a unique subscription identifier which
is used by the application server to tag the individual change
notifications. Thus, the client knows to which real-time
query subscription an incoming change notification belongs,
even though all subscriptions share the same connection.

result from one state to another. Every notification carries
the information required to implement the corresponding
result change, e.g. an after-image of the written entity and
a match type that encodes the exact kind of result change:
add (new result member), change (result member was up-
dated), changeIndex (sorted queries only: result member
was updated and changed its position), remove (item left
the result). The first notification message for any real-time
query contains the initial result that is generated on query
subscription. All subsequent notifications contain incremen-
tal result updates: Whenever a write operation changes any
currently active real-time query, the InvaliDB cluster sends
a notification to the subscribed application servers which, in
turn, forward the notification to the subscribed clients.

Since communication over the event layer is asynchronous,
InvaliDB may receive writes delayed or skewed and change
notifications may be generated out-of-order (compared with
the order in which the corresponding writes arrived at the
database). While real-time query results may thus diverge
temporarily from database state, they are eventually con-
sistent [17] in the sense that they synchronize once InvaliDB
has applied the same write operations as the database.

5.1 Two-Dimensional Workload Distribution
To enable higher input rates than a single machine could

handle, the InvaliDB cluster partitions both the query sub-
scriptions and incoming writes evenly across a cluster of ma-
chines: By assigning each node in the cluster to exactly one
query partition and exactly one write partition, any
given node is only responsible for a subset of all queries and
only a fraction of all written data items.

Figure 2 depicts an InvaliDB cluster with three query par-
titions (vertical blocks) and three write partitions (horizon-
tal blocks). When a subscription request is received by one
of the query ingestion nodes (1), it is forwarded to every
matching node in the corresponding query partition; while
the query itself is broadcasted to all partition members, the
items in the initial result are delivered according to their
respective write partitions (i.e. every node receives only a
partition of the result). Likewise, any incoming after-image
received by one of the write ingestion nodes (2) is de-
livered to all nodes in the corresponding write partition as
well. To detect result changes, every matching node matches
any incoming after-image against all of its queries and com-
pares the current against the former matching status of the
related entity. In the example, a change notification is gen-
erated by the matching node (3) that is responsible for the
intersection of query partition 2 and write partition 2. Since
every matching node only holds a subset of all active queries
and only maintains a partition of the corresponding results,
processing or storage limitations of an individual node do
not constrain overall system performance: By adding query
partitions (+qp) or write partitions (+wp), the number of
sustainable active queries and overall system write through-
put can be increased, respectively. In similar fashion, the
sustainable rate of data intake can be increased by adding
nodes for query and write stream ingestion; these nodes are
stateless (and therefore easy to scale out) as they merely
receive data items from the event layer, compute their re-
spective partitions by hashing static attributes, and forward
the items to the corresponding matching nodes.

To make workload distribution as even as possible, In-
valiDB performs hash-partitioning for inbound writes and
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queries. For after-images, the hash value is computed from
the primary key, because it is the only attribute that is
transmitted on insert, update, and delete. In contrast, there
is no attribute that is present in all requests related to a
particular query. Using the subscription ID to generate the
hash value would not violate correctness as the partitioning
would be consistent throughout subscription lifetime. How-
ever, since subscription IDs are randomly generated, query
partitioning would be random as well; in consequence, a
single query could be assigned to several (or even all) par-
titions within the InvaliDB cluster, given it was associated
with multiple subscriptions. For the sake of efficiency, the
hash value is therefore computed from the query attributes
when the subscription request is received. Thus, distinct
subscriptions to a particular query are always assigned the
same hash value and are thus routed to the same partition,
even when received by different application servers. Since
the hash value cannot be computed for requests other than
the subscription requests, though, an application server re-
members every hash value for the entire lifetime of a sub-
scription and attaches it to every subsequent3 request relat-
ing to the same subscription.

There are two race conditions that need to be acknowl-
edged in InvaliDB’s design. The first race condition is be-
tween the write operation and the pull-based query (write-
query race): The initial result will only reflect the write
operation, if the write is applied at the database before ex-
ecution of the pull-based query. For example, a newly in-
serted item will only be present in the initial result, when the
insert is processed before the query. The second race condi-
tion is between the write operation and the real-time query
subscription (write-subscription race): The responsible
matching node will only implicitly match the incoming after-
image against the query, if the subscription request arrives
before the after-image. Without special precautions, a write
operation can thus be missed by a real-time query when it
is (1) not reflected in an initial result and when it is also
(2) processed by the responsible matching node before the
query has been activated through the subscription request.

To avoid missing result changes to race conditions between
the initial query result and incoming write operations, In-
valiDB employs temporary write stream retention: Ev-
ery matching node stores received after-images and matches
them against a new query on subscription. However, since
every matching node has only bounded space, long-lasting
network partitions can render this scheme infeasible. In
practice, write stream retention time therefore needs to be
chosen according to actually observed delays. For refer-
ence, the production deployment at Baqend enforces a re-
tention time of few seconds, since our InvaliDB prototype
exhibits consistent end-to-end notification latencies in the
realm of few milliseconds with subsecond peaks (see Section
6). During normal operation, InvaliDB thus provides sub-
second data freshness consistently, which is bounded by
a configurable heartbeat interval: In the absence of heart-
beat messages, an application server terminates an affected
subscription with an error that can be handled by the sub-
scribed clients (e.g. by re-subscribing to the real-time query

3As a side note, this scheme makes it impossible to assign
cancellation and TTL extension requests to a query partition
without prior subscription. However, this does not present
an error scenario, since cancellations and TTL extensions
are only meaningful for active subscriptions.

or falling back to pull-based queries). It should be noted
that write stream retention is not only exploited for after-
image replay on subscription, but also crucial for staleness
avoidance, i.e. the ability to detect (and ignore) stale write
operations. Since write operations are versioned, the after-
image associated with an insert or update operation for a
specific item can thus be ignored whenever a delete (or more
recent version) for the same item has already been received.

5.2 Advanced Queries With Processing Stages
By partitioning queries and writes orthogonally to one

another, the task of evaluating query predicates is evenly
distributed across all nodes in the cluster. However, while
this scheme avoids hotspots, it also prevents capturing the
context between different items within the result: As every
matching node holds result partitions, changes of an indi-
vidual result can only be registered on a per-record basis.
In more detail, changes relating to the sorting order (match
type changeIndex) cannot be detected and queries that ag-
gregate values from different entities (e.g. to compute an
average) or queries that join data collections cannot be han-
dled, either.

In order to make InvaliDB suitable for these kinds of real-
time queries without impairing overall scalability, the pro-
cess of generating change notifications for more advanced
queries is performed in loosely coupled processing stages
that can be scaled independently (cf. staged event-driven
architecture (SEDA) [71]). The first processing stage for
any query is therefore the filtering stage as described in
Section 5.1. It is the only processing stage to ingest after-
images; all subsequent processing stages receive change noti-
fications from upstream matching nodes. The filtering stage
only passes down written data items when they either satisfy
a query’s matching condition (match types add and change)
or when they just ceased matching (match type remove);
all other input is filtered out. Thus, throughput is greatly
reduced for subsequent stages in case of queries that re-
quire more complex processing, because no change notifi-
cations are generated for obviously irrelevant writes (sim-
ilar to existing approaches for efficient view maintenance,
e.g. [19] [18] [46] [26]).

Since query results are partitioned in the filtering stage,
it directly serves queries that can be maintained without
coordination between result partitions; this is the case for
unsorted filter queries over single collections. Change no-
tifications for these queries are directly sent to the event
layer. For more advanced queries, filtering stage output is
instead passed on to the subsequent stages. In the sort-
ing stage, matching nodes detect positional changes of in-
dividual items within the result (match type changeIndex).
Likewise, added and removed items based on limit and offset
clauses are identified here. Through the filtering and sorting
stages alone, InvaliDB gains the query expressiveness of ag-
gregate-oriented document stores such as MongoDB which
subsumes the expressiveness of state-of-the-art real-time da-
tabases (cf. Section 3). Adding support for joins or aggre-
gations through additional processing stages is conceivable
and planned for future work (cf. Section 8.1). We discuss
the challenges and trade-offs introduced by these additional
stages in [72, Ch. 3].

Sorted Filter Queries. For queries without explicit or-
dering, limit, or offset, matching conditions are static: A
given object is part of a given query result, if and only if
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ID Title             Year

5  DB Fun            2018

8  No SQL!           2018

3  BaaS For Dummies  2017

4  Query Languages   2017

7  Streams in Action 2016

9  SaaS For Dummies  2016
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result

SELECT id, title, year FROM articles

 ORDER BY year DESC OFFSET 2 LIMIT 3

offset
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limit

.
.
.

.
.
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.
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Figure 3: Knowledge of the items in the query’s offset and
beyond the specified limit is critical to enable incremental
maintenance of a sorted query’s result.

the object satisfies all of the query’s filter predicates. Thus,
all information required for matching is encapsulated in the
query and the written after-image. This does not only al-
low distributing workload by queries and writes at the same
time, but also makes unsorted filter queries over single col-
lections inherently self-maintainable [61], i.e. their results
can be kept up-to-date by only considering incoming writes.
This is not the case for explicitly sorted filter queries, be-
cause their change notifications also reflect result permuta-
tions; to capture these, a matching node in the sorting stage
requires access to the full result. Moreover, even the match-
ing status of an object can depend on its absolute position
within the result or its relative position to other items: For
a sorted query with a limit clause, adding a new item to the
result can push the last item out and removing an item from
the result can pull another item in. When a sorted query
is specified with an offset clause, result membership further
depends on the items in the offset, i.e. on items that are
not even part of the result. To maintain a sorted real-time
query in incremental fashion, having access to the full result
may therefore not even suffice; for sorted queries with limit
or offset clauses, a matching node requires auxiliary data4.

Figure 3 shows a sorted query with limit and offset clauses
along with related data to illustrate the extent of the aux-
iliary data required for incremental result maintenance.
When an article is removed from the offset by deletion or up-
date (e.g. ’No SQL!’), the first article in the result (’BaaS
For Dummies’) will move into the offset, while the first ar-
ticle beyond limit (’SaaS For Dummies’) will move into the
result. The other way around, when an article is added to
the offset (either by insert or update), the last article in the
offset will move into the result and the last article in the
result will move beyond limit (i.e. out of the result). To
detect updates and deletes of items in the offset, the match-
ing node responsible for a sorted query needs to be aware
of all items in the offset. To further handle operations that
remove an item from either the offset or the result, the node
also needs to know at least one item beyond the specified
limit; otherwise, a removed item cannot be replaced.

In order to make the query maintenance procedure more
robust against these kinds of write operations, sorted real-
time queries are registered with auxiliary data in InvaliDB.
Similar to related work on top-k query maintenance [80], the
query used to retrieve the bootstrapping data (i.e. the initial

4In addition, the sorting key must be unambiguous to ensure
that InvaliDB’s real-time query engine and the pull-based
database engine are aligned. Our prototype therefore adds
the primary key as final attribute to the sorting key.

result) is rewritten for this purpose: First, the offset clause
is removed (i.e. OFFSET = 0), so that the initial result con-
tains all elements in the query’s offset. Maintaining all items
in the offset is necessary, because otherwise the actual re-
sult cannot be maintained in the presence of certain update
operations (see example above). Second, the limit clause is
extended beyond the query’s specified limit, so that the ini-
tial result contains all items in the offset, the actual result,
and an additional number of items beyond limit; we refer
to the number of items known beyond limit as slack. By
definition, the slack changes dynamically, because items can
enter and leave both result and offset at runtime. Therefore,
the current slack also represents the number of subsequent
removes that can be handled at a given time.

Whenever the slack reaches zero, removing an item from
the result or offset will render the query unmaintainable, be-
cause the matching node cannot determine which effect the
removal has on the query result. When such a query main-
tenance error occurs, the responsible matching node de-
activates the query and sends out a change notification with
an error attribute. This particular error notification can
also be seen as a query renewal request, because it trig-
gers the process to retrieve a fresh result which is required
for reactivating the query: On receiving a query renewal
request, an application server reexecutes the (rewritten5)
query against the database and submits the result to the
InvaliDB cluster via subscription request. After receiving
the up-to-date result, the responsible matching node in the
sorting stage sends out incremental change notifications that
reflect the evolution from the last valid to the current result
representation. From there on, the query is self-maintain-
able again and therefore will produce change notifications
until its cancellation or until the next query maintenance
error. In order to make the query load inflicted upon the
underlying database both predictable and configurable, In-
valiDB controls the frequency of query renewals through a
poll frequency rate limit. For details, see [72, Sec. 3.3.2].

5.3 Implementation
While we use SQL for illustration in this paper, InvaliDB

is a database-agnostic design and most of its components
are generic enough to be shared between implementations
for different databases. The event layer abstracts from the
query language and data format as it handles data trans-
missions with entirely opaque payloads; routing and parti-
tioning only rely on primary keys (write operations) and the
server-generated query identifiers (change notifications, que-
ry subscriptions, etc.). Likewise, the two-dimensional work-
load distribution scheme is not based on any specific tech-
nology or database language; it only prescribes an abstract
mechanism to ensure that all queries are matched against
all incoming after-images. Finally, even the way that match
types are derived from the matching status abstracts from
specificities of the underlying data store: Whenever an in-
coming after-image matches a query, it is either new to the
result (add) or it was updated within the result (change),
possibly changing its position (changeIndex); correspond-
ingly, a non-matching after-image either corresponds to an
item that is leaving the result (remove) or it does not bear
any relevance to the result whatsoever.

5As a runtime optimization, the slack value can be adapted
to the workload on reexecution, for example by using a
higher slack value to increase robustness against deletes.
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There are only two aspects of real-time query maintenance
that contain database-specific artifacts. First, the applica-
tion server might have to be adapted, e.g. for delivering fully
specified and versioned after-images to InvaliDB on every
write (see beginning of Section 5) or for rewriting queries
(see discussion of sorted queries with non-empty offset on
page 6). Second, the pluggable query engine is tailored
to the underlying database’s query engine, since both query
engines have to produce the same output, given the same
input of queries and writes. In more detail, the pluggable
query engine contains all logic related to (1) parsing queries
according to one specific query language, (2) interpreting the
incoming after-images according to the prevalent format and
encoding, (3) computing the actual matching decision, and
(4) sorting the result according to database semantics.

By encapsulating the specialized parts of query match-
ing behind different interfaces in a pluggable component,
generic system components can be reused and support for
new databases can be added with relative ease.

5.4 Prototype & Production Deployment
Our InvaliDB prototype is built with the distributed

stream processor Storm [68] (workload distribution) and the
in-memory store Redis [10] (event layer) to provide real-time
queries on top of the NoSQL database MongoDB [54] with
sharded collections. We monitor query latencies and execu-
tion times to ensure the pull-based part of our architecture
does not become a bottleneck for providing initial query re-
sults. For details on pull-based query performance, see [33].

Workload Distribution. For managing the distributed
execution of our query matching workload, we only consid-
ered horizontally scalable and fault-tolerant stream proces-
sors providing at-least-once or exactly-once delivery guar-
antees and low end-to-end latency: We thus immediately
dismissed systems that are prone to data loss (e.g. S4 [57]),
had already been abandoned (e.g. Muppet [45]), or were not
publicly available when we started development in 2014 (e.g.
Heron [44], Apex [3], Kafka Streams [42], Wallaroo [55]). We
also did not consider systems without on-premise deploy-
ment option (e.g. Google’s MillWheel [11] and Photon [14]
or the Dataflow cloud service [12], and Facebook’s Puma
and Stylus [21]). Given the requirement for low latency, the
viable choices for the underlying stream processor were thus
narrowed down to either Storm [68] or Flink [13]; by concept,
Samza [62] and Spark Streaming [82] cannot provide com-
petitive latency [73]. Even though Flink provides higher-
level abstractions in comparison with Storm and therefore
might have facilitated more efficient development, we finally
chose Storm for the benefit of better latency (cf. [22]).

Event Layer. When choosing the underlying messaging
system for our event layer implementation, we excluded soft-
ware libraries without built-in standalone server (e.g. Ze-
roMQ [38] [6]) and systems that were not publicly available
when we started development in 2014 (e.g. Moquette [4]).
To minimize overall change notification latency for our In-
valiDB implementation, we chose Redis over system alterna-
tives with the ability to retain and replay data, even though
they would have facilitated easier fault recovery (e.g Rab-
bitMQ [5], ActiveMQ [15], Qpid [16], Kafka [43]).

MongoDB-Compatible Query Engine. The real-
time query engine is custom-built in Java and supports
sorted MongoDB queries with limit and offset. It can handle
arbitrarily nested JSON documents and it supports query

operators for content-based filtering through regular expres-
sions ($regex), comparisons (e.g. $eq, $ne, $gt, $gte), log-
ical combination of filter expressions (e.g. $and, $or, $not),
evaluating matching conditions over array values (e.g. $in,
$elemMatch, $all, $size), full-text search ($text), geo que-
ries (e.g. $geoWithin, $nearSphere), and various others
(e.g. $exists, $mod). As of writing, full-text search [64] and
geo queries [58] have not been rolled out into production.

Application Server. To retrieve after-images on every
write, our implementation uses MongoDB’s findAndModify
[53] operation for inserts and updates, because it directly
returns the after-images which are then simply forwarded
to the InvaliDB cluster; the after-image of a deleted entity
is null and therefore does not have to be retrieved from
the database. The application server initializes every record
with a version number and increments it on every write.

Please refer to the InvaliDB PhD thesis [72, Ch. 4] for a
discussion of fault tolerance under different error scenarios,
an experimental evaluation of event layer scalability, multi-
query optimizations as well as computational complexity
of our real-time query engine, and Java Virtual Machine
(JVM) tuning that was necessary to alleviate the impact
and maximize the predictability of stop-the-world garbage
collection (GC) pauses [34] in our Java-based software stack.

6. INVALIDB CLUSTER PERFORMANCE
To quantify the scalability of our InvaliDB prototype,

we measured change notification latency and sustainable
matching throughput for InvaliDB clusters under differ-
ent workloads and configurations. Our evaluation focuses
on the scalability of the filtering stage which implements
InvaliDB’s unique two-dimensional workload distribution
scheme: While the filtering stage processes all queries and
all write operations, the subsequent sorting stage only has
to cope with filtering stage output partitioned by query, so
that it does not become a bottleneck in practice before the
subscribed client application does: In the web-centered use
cases that motivate our work, subscriptions typically revolve
around UI updates in websites or mobile apps and clients are
significantly less powerful than InvaliDB’s matching nodes.

6.1 Experiment Setup
All experiments were executed in a private cloud en-

vironment (OpenStack 2013.2 Havana, Docker 17.09.0-ce,
Ubuntu 14.04). The underlying hardware comprised five
identical machines with six-core CPUs (Intel Xeon E5-2620
v2 at 2.1GHz, 64 GB RAM), connected over a 1Gbit/s LAN.
Our experimental setup consisted of the following virtual-
ized components: 1 InvaliDB client (2 vCPUs) for insert-
ing records and measuring latency, 1 Redis 3.0 server (1
vCPU) for communication between InvaliDB client and clus-
ter (event layer), and a Storm 1.1.0 cluster (1 vCPU per
node) running InvaliDB. Please note that the event layer
(Redis) did not become a bottleneck. While the number of
InvaliDB nodes employed for query matching varied with
the experiments (n ∈ {1, 2, 4, 8, 16}), there were always 4
nodes for write ingestion and 1 single node for query inges-
tion. By choosing the same number of data ingestion nodes
for all experiments, we ensured that workload partitioning
was the only difference between InvaliDB configurations.

Given our limited resources, we had to deploy large In-
valiDB clusters with relatively many matching nodes per
server which led to CPU contention between matching nodes
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Figure 4: Read scalability: the number of serviceable real-
time queries by the number of query partitions (both in
logarithmic scale) at 1 000 ops/s under different SLAs.

and the underlying virtualization stack. To alleviate this
effect, we throttled InvaliDB matching nodes in all experi-
ments to 80% of physical single-core CPU time.

Workload. For every InvaliDB cluster configuration, we
performed a series of experiments, each of which consisted
of two phases: In the preparation phase, any still-active
queries from earlier experiments were removed and queries
for the upcoming one were activated. In the subsequent
1-minute measurement phase, the client machine per-
formed a steady number of inserts per second against the
event layer (Redis server). The client also measured change
notification latency as the time from before inserting an item
until after receiving the corresponding notification; the mea-
sured end-to-end latency values thus subsumed both proc-
essing times in the InvaliDB cluster and message propaga-
tion delays through the event layer. We increased the work-
load in each experiment series until 99th percentile latency
exceeded a given threshold (latency SLA). This marks sys-
tem saturation as it indicates that incoming operations can-
not be worked off immediately and therefore start queue-
ing up, causing latency spikes and even subscription failures
(when delays are so high that heartbeat messages time out).

Each written document had five 10-literal string attributes
and five integer attributes, one of which was a unique ran-
dom number. The queries were defined with comparison
predicates on the random number field, corresponding to
the following SQL query: SELECT * FROM test WHERE random
≥ i AND random < j. To minimize (de-)serialization over-
head for change notifications, we made sure only 1 000 of the
queries would match exactly one written item each. Thus,
we achieved a steady notification throughput of roughly 17
matches per second (1 000 per 1-minute experiment). Since
queries were added during the preparation phase, the num-
ber of active queries remained constant for the duration
of each experiment, so that the matching nodes were ex-
clusively occupied with matching queries against incoming
writes, but not with adding or canceling query subscriptions.

6.2 Linear Read Scalability
Figure 4 shows the number of concurrently sustainable

1 2 4 8 16
write partitions (WP)

1k

4k

8k

12k

16k
20k
24k

th
ro

ug
hp

ut
 (o

ps
/s

)

1k queries, 1 query partition (QP)

99% latency  20ms
99% latency  30ms

99% latency  50ms
99% latency  100ms

Figure 5: Write scalability: sustainable write throughput by
the number of write partitions (both in logarithmic scale)
serving 1 000 active real-time queries under different SLAs.

real-time queries for clusters with 1, 2, 4, 8, and 16 que-
ry partitions (QP) and a single write partition (WP) under
different SLAs, at a fixed write throughput of 1 000 opera-
tions per second (note logarithmic scale). Since we increased
workload in increments of 500 queries, per-node throughput
measurements were more accurate (and therefore appear to
be slightly better) for larger clusters: The single-node de-
ployment could manage 1 500 and failed at 2 000 queries,
whereas the 16-node deployment could sustain 29 000 and
failed at 29 500 concurrent queries (i.e. around 1 800 queries
per node). Since doubling the number of query partitions
essentially doubled the number of sustainable queries every
time, our measurements thus confirm that InvaliDB scales
linearly with query load. As the only exception, the largest
InvaliDB cluster merely supported 23 500 concurrent que-
ries with 99th percentile latency below 20ms, but more than
28 500 under all other SLAs. We attribute this anomaly to
the CPU contention issue described in Section 6.1, because
it made change notification latency unstable when physical
servers (virtualization hosts) approached capacity.

6.3 Linear Write Scalability
Figure 5 depicts sustainable throughput for InvaliDB clus-

ters with a single query partition and 1 to 16 write par-
titions, under a fixed read workload of 1 000 active real-
time queries and varying SLAs (note logarithmic scale).
Considering the sustainable matching operations per sec-
ond (matches/s) as the number of active real-time queries
multiplied by write operations per second, our implemen-
tation achieved lower overall matching performance under
the write-heavy workloads than under the read-heavy work-
loads discussed above. In more detail, the 99th percentile
latencies under increasing write throughput were measured
below 30ms until about 75% and below 50ms until about
95% of system capacity, while latencies under the read-heavy
workloads did not exceed 30ms before reaching the perfor-
mance limit. Similarly, sustainable write throughput was
feasible until 26 000 ops/s with 1 000 active queries (26 mil-
lion matches/s) for the largest InvaliDB cluster, while 29 000
queries could be served at 1000 ops/s (29 million matches/s)

9



avg. std. dev. 99% max.
1 QP, 1 500 queries 9.4 3.4 17.4 45
2 QP, 3 000 queries 9.2 2.4 15.2 28
4 QP, 6 000 queries 9.0 2.5 15.6 42
8 QP, 12 000 queries 9.0 2.4 15.5 32
16 QP, 24 000 queries 9.2 2.9 20.1 46

(a) Read-heavy workloads at 1 000 ops/s (fixed): 1 500 queries
per query partition (about 80% of system capacity).

avg. std. dev. 99% max.
1 WP, 1 000 ops/s 8.8 2.4 15.5 34
2 WP, 2 000 ops/s 8.9 2.3 15.0 27
4 WP, 4 000 ops/s 9.0 2.3 15.6 30
8 WP, 8 000 ops/s 9.5 2.4 16.8 32
16 WP, 16 000 ops/s 10.3 3.5 21.9 79

(b) Write-heavy workloads with 1 000 real-time queries (fixed):
1 000 ops/s per write partition (about 66% of system capacity).

Table 3: Measured latency in milliseconds (average, standard deviation, 99th percentile, max.) for different InvaliDB clusters.

with the same number of nodes under the read-heavy work-
load. This effect is caused by the overhead for (de-)serial-
izing and parsing after-images which grows with increasing
write throughput; since queries were activated before the ex-
perimental measurement phase, no comparable effect could
be observed during the read scalability experiments.

6.4 Consistently Low Latency
To illustrate that InvaliDB’s latency characteristics are

stable across all configurations, we compare notification la-
tency for different InvaliDB cluster sizes under identical rela-
tive load in Table 3. At about 80% of system capacity under
the read-heavy workload (a), notification latency was mea-
sured between 9.0ms and 9.4ms with standard deviations
ranging from 2.4ms to 3.4ms, while outliers never exceeded
50ms. At roughly two thirds of system capacity under the
write-heavy workload (b), the average notification latencies
ranged from 8.8ms to 10.3ms with standard deviations be-
tween 2.3ms and 3.5ms and outliers that were always well
below 100ms. The largest InvaliDB cluster experienced some
outliers and therefore slightly deteriorated latency in aver-
age, standard deviation, and 99th percentile compared to
the clusters with fewer nodes. As one possible explanation,
CPU contention incurred by our test setup might have af-
fected matching node performance for the largest InvaliDB
configurations, but not the smaller ones (cf. Section 6.1).
Another possibility is that garbage collection in the write
ingestion nodes could have caused occasional latency strag-
glers at high throughput that were insignificant under the
write workload during the read scalability experiments.

7. QUAESTOR SERVER PERFORMANCE
Within the Quaestor architecture (cf. Section 5), In-

valiDB is used in two different ways: First, InvaliDB
makes query result caching feasible by providing low-
latency invalidation messages for stale query results. In
our VLDB 2017 paper [33], we already demonstrated that
this InvaliDB-enabled query caching scheme can improve
throughput and latency of pull-based queries by more than
an order of magnitude. As the second and primary use
case at Baqend, however, InvaliDB generates change deltas
for query results which are delivered to end users through
push-based real-time queries. In contrast to competing
real-time database architectures that burden the applica-
tion server with query matching (cf. Section 3.1), result
maintenance is delegated to the InvaliDB cluster and the
application server is thereby removed as a bottleneck.

In this section, we demonstrate that InvaliDB’s opt-in re-
sult maintenance is very lightweight and enables high write
throughput, many concurrent real-time queries, and low
double-digit latencies even for single-server deployments.

7.1 Experimental Scope
In our architecture, clients subscribe to real-time queries

at application servers which, in turn, subscribe the corre-
sponding real-time queries at InvaliDB’s event layer. An
application server thus basically acts as a proxy between the
clients and InvaliDB. Since the application servers and In-
valiDB are decoupled by the event layer, both can be scaled
separately. InvaliDB’s scalability with read and write work-
loads is evident from the experimental results presented in
Section 6. Additional application servers can always be
spawned to take care of further client subscriptions, be-
cause different real-time query subscriptions are managed
independently from one another. This characteristic follows
from our system design and has been observed by us in pro-
duction. Due to space limitations, we therefore restrict the
performance evaluation in this section to a quantification of
the latency overhead and throughput limitations of deploy-
ments with a single application server. To this end, we mea-
sure change notification latency exposed to Quaestor clients
and compare it to the latency achieved by a standalone In-
valiDB deployment (i.e. without application server).

7.2 Setup & Workload
We conducted our experiments using the same basic setup

as described in Section 6 (standalone InvaliDB deployment),
but we added an application server (6 vCPUs, 4 GB RAM)
between the benchmark client and InvaliDB’s event layer:
In the Quaestor deployment, the benchmark client commu-
nicated exclusively with the application server (and not with
the event layer directly), like an end user (see Figure 1 on
page 4). Compared to the experiments from Section 6, we
thus effectively introduced an additional network hop for
all messages sent between the benchmark client and the In-
valiDB cluster. For testing Quaestor’s real-time query per-
formance under read- and write-heavy workloads, we used
the respectively most potent InvaliDB deployment: We con-
figured InvaliDB with 16 query partitions and 1 write par-
tition for the read-heavy workload and used the inverse de-
ployment with only a single query partition and 16 write
partitions for the write-heavy workload.

To put the overhead and limitations of the Quaestor archi-
tecture into perspective, we contrast Quaestor’s latency and
throughput characteristics with InvaliDB performance mea-
surements from Section 6, using identical workloads: The
benchmarking client inserted data items at a fixed rate for
one minute, measuring change notification latency for each
received change event. Notification latency was again mea-
sured as the time from right before inserting an item until
after receiving the corresponding event. We also registered
all real-time queries before the measurement phase and lim-
ited the matching items per run to 1 000 (≈ 17 matches/s)
to bound messaging overhead, like in earlier experiments.
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(a) Read scalability: change notification latency under an in-
creasing query load (logarithmic scale) at a constant write
throughput of 1 000 writes per second.
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(b) Write scalability: change notification latency under an in-
creasing write load (logarithmic scale) at a fixed query load of
1 000 active real-time queries.
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(c) Read-heavy workload: latency distribution with 24 000 active
real-time queries at 1 000 writes per second.

0 20 40 60 80 100
latency (ms)

0

0.05

0.1

0.15

0.2

fre
qu

en
cy

5k ops/s, 1k queries
Quaestor (1 application server)
InvaliDB (1 query partition, 16 write partitions)

(d) Write-heavy workload: latency distribution with 1 000 active
real-time queries at 5 000 writes per second.

Figure 6: Quaestor vs. standalone InvaliDB: change notification latency under read- and write-heavy workloads.

At Baqend, every application server maintains a single
WebSocket connection to a client-facing proxy server which
is only responsible for handling the immediate client connec-
tions (and for nothing else). Thus, the number of real-time
query subscriptions can be fanned out with only one sin-
gle WebSocket connection maintained by each application
server. Since the number of actual client connections is thus
transparent to the application server, it is not relevant in
the context of this evaluation. We therefore used a single
WebSocket connection between application server and our
benchmarking client for all real-time query subscriptions.

7.3 Low Application Server Overhead
Figure 6 shows our results of comparing Quaestor’s with

InvaliDB’s real-time query performance. As is evident from
the line plot of 99th percentile latency during the read-heavy
workload (a), Quaestor essentially adds a fixed overhead of
about 5ms to InvaliDB’s raw change notification latency.
At the same time, Quaestor’s application server does not
represent a bottleneck under the read-heavy workload as
it is only limited by InvaliDB’s capabilities. Counterintu-

itively, though, the Quaestor deployment was able to sup-
port slightly more queries than the InvaliDB-only deploy-
ment during the read-heavy workload in our experiments as
shown in Figure 6a. We would like to point out that this
is no measurement error, but a consequence of pushing In-
valiDB to the performance limit: Near system capacity, (i.e.
around 30 000 concurrent real-time queries in these experi-
ments), 99th percentile latency becomes unstable and peak
performance therefore varies slightly between experiments.

The corresponding line plot for the write-heavy workload
(b) shows that write throughput is limited by Quaestor’s
application server at roughly 6 000 operations per second6.
For comparison, write throughput on a single collection is
capped at 500 and 1 000 writes per second in Firestore and
Firebase, respectively (cf. Section 3). Without even scaling
out, our experiment deployment thus outperformed Google’s
commercial real-time database offerings by factors 6 to 12.

6An application server without the real-time query feature
does not provide significantly higher peak throughput. This
illustrates that our mechanism imposes very little overhead.
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A comparison of the latency distributions from the read-
heavy (c) and the write-heavy (d) workloads at roughly
80% capacity further illustrates our mechanism’s low over-
head regarding notification latency: During the read-heavy
workload, Quaestor’s latency distribution is shifted to the
right by about 5ms and displays a slightly longer tail, but
otherwise corresponds to InvaliDB’s latency characteristics.
While Quaestor’s latency distribution receives a noticeable
right skew under write pressure, performance deteriorates
gracefully and remains consistently below 100ms even near
full capacity.

We did not include measurements of the impact of query
subscription, because it is not limited by InvaliDB. Rather,
the time it takes to activate a real-time query (or several
real-time queries concurrently) critically depends on the per-
formance of the underlying pull-based storage for fetching
the initial query results.

7.4 Result Summary & Interpretation
To sum up, the implementation of our real-time data-

base design exhibits predictable and consistently low la-
tency, even under demanding OLTP workloads. The pre-
sented experimental results demonstrate high read and write
scalability and further show that real-time query subscrip-
tions do not impose significant overhead on the application
server: While serving a real-time query will become more
expensive as match throughput grows, the mechanism itself
is very lightweight and facilitates many concurrent real-time
queries. Since overhead for the application server depends
on the number of change events (and not the number of con-
current query subscriptions), serving many users at the same
time is very efficient. At the same time, even a single-server
deployment can handle write workloads beyond documented
peak throughput of competing commercial offerings.

8. DISCUSSION & OUTLOOK
While the rising popularity of push-based datastores like

Firebase and Meteor indicates a public demand for databa-
ses with real-time queries, no current implementation com-
bines expressiveness, high scalability, and fault tolerance.
In this paper, we propose and evaluate a novel real-time
database design that adds push-based real-time queries as
an opt-in feature to existing pull-based databases, without
the limitations of other state-of-the-art systems. The fact
that InvaliDB supports the query expressiveness of NoSQL
(document) stores such as MongoDB illustrates that our de-
sign can service a wide range of use cases. The presented
experimental results further confirm that our Java-based
InvaliDB prototype scales linearly with write throughput
and with the number of concurrent users (i.e. query sub-
scriptions). Across all cluster sizes and under various read-
and write-heavy workloads, our implementation displayed
99th percentile latencies consistently below 30ms when un-
der moderate load and still within 100ms when approaching
system capacity. Our experiments thus show that InvaliDB
is feasible to implement and can be efficiently operated.

To provide additional evidence for InvaliDB’s practical-
ity, the prototype described in this paper has been used in
production at the company Baqend since July 2017. Here,
it serves two different purposes. First, it enables consistent
query caching by generating low-latency result change noti-
fications used for query cache invalidation, thus improving

both throughput and latency of the existing pull-based que-
ry mechanism by more than an order of magnitude. Second,
InvaliDB extends the functionality of the MongoDB-based
Database-as-a-Service by adding push-based real-time que-
ries to the otherwise pull-based query interface.

8.1 Open Challenges & Future Work
We firmly believe that our work provides valuable insights

for real-time database architects, but we see ample oppor-
tunities for follow-up research and development. As a final
note, we would like to exemplify open challenges and possi-
ble future work with in three areas.

Aggregations & Joins. Our practical work so far has
been focused on sorted filter queries over single collections
as they are supported by many document-oriented NoSQL
databases. Future research could extend our work by addi-
tional query types (e.g. aggregation and join queries) or add
support for database languages such as SQL. As a related ef-
fort, the consolidation of InvaliDB’s consistency model with
transactional guarantees could be pursued, e.g. by imple-
menting transactional visibility for write operations.

Client Performance. Since we have not considered per-
formance for end user devices in our work so far, future
research could also examine InvaliDB’s real-time query sub-
scriptions from the consumer perspective, e.g. to develop
schemes for saving client resources by compressing messages
or by collapsing write operations and change notifications
to mitigate write hotspots. This seems particularly im-
portant in the context of web and mobile applications, be-
cause smartphones and other devices with limited processing
power, weak network links, and/or bounded (monthly) data
allowance appear to be more likely bottlenecks in certain
usage scenarios (e.g. under heavy hitter queries) than the
application servers or InvaliDB’s real-time query engine.

Application Development. We see a tremendous op-
portunity for innovation in upgrading existing pull-based
interfaces with push-based query features, since InvaliDB
makes real-time queries available on top of existing data-
bases. For example, certain portions of a website could
be made interactive to augment the user experience. In-
valiDB could also be integrated into current cache coherence
schemes to improve efficiency or reduce staleness. Similar to
its role within the Quaestor architecture, it could perform
asynchronous change detection to trigger updates or recom-
putation of materialized views or other query caches.

9. CONCLUSION
In the past, practitioners have been rightfully cautious in

adopting real-time databases, because they have been hard
to integrate into existing applications and mostly intractable
to use at scale. The system design presented in this pa-
per addresses frequent concerns through a combination of
characteristics that, to the best of our knowledge, is unique
among real-time databases: First, it abstracts from the un-
derlying data model and is therefore applicable to virtually
any database. Second, InvaliDB scales with both the num-
ber of concurrent queries and with write throughput. Third
and arguably most important for productive settings, it is
designed as an opt-in component with an isolated failure
domain to make its adoption a low-risk endeavor. In con-
clusion, we hope that our work sparks new confidence in the
practicality of real-time databases and that it inspires fur-
ther research on the topic within the database community.
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