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Abstract. Today, data is generated and consumed at unprecedented
scale. This has lead to novel approaches for scalable data management
subsumed under the term �NoSQL� database systems to handle the ever-
increasing data volume and request loads. However, the heterogeneity
and diversity of the numerous existing systems impede the well-informed
selection of a data store appropriate for a given application context.
Therefore, this article gives a top-down overview of the �eld: Instead
of contrasting the implementation speci�cs of individual representatives,
we propose a comparative classi�cation model that relates functional and
non-functional requirements to techniques and algorithms employed in
NoSQL databases. This NoSQL Toolbox allows us to derive a simple
decision tree to help practitioners and researchers �lter potential system
candidates based on central application requirements.

1 Introduction

Traditional relational database management systems (RDBMSs) provide
powerful mechanisms to store and query structured data under strong con-
sistency and transaction guarantees and have reached an unmatched level of
reliability, stability and support through decades of development. In recent
years, however, the amount of useful data in some application areas has become
so vast that it cannot be stored or processed by traditional database solutions.
User-generated content in social networks or data retrieved from large sensor
networks are only two examples of this phenomenon commonly referred to as
Big Data [35]. A class of novel data storage systems able to cope with Big Data
are subsumed under the term NoSQL databases, many of which o�er hori-
zontal scalability and higher availability than relational databases by sacri�cing
querying capabilities and consistency guarantees. These trade-o�s are pivotal for
service-oriented computing and as-a-service models, since any stateful service
can only be as scalable and fault-tolerant as its underlying data store.

There are dozens of NoSQL database systems and it is hard to keep track of
where they excel, where they fail or even where they di�er, as implementation
details change quickly and feature sets evolve over time. In this article, we there-
fore aim to provide an overview of the NoSQL landscape by discussing employed
concepts rather than system speci�cities and explore the requirements typically
posed to NoSQL database systems, the techniques used to ful�l these require-
ments and the trade-o�s that have to be made in the process. Our focus lies
on key-value, document and wide-column stores, since these NoSQL categories
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cover the most relevant techniques and design decisions in the space of scalable
data management.

In Section 2, we describe the most common high-level approaches towards
categorizing NoSQL database systems either by their data model into key-value
stores, document stores and wide-column stores or by the safety-liveness trade-
o�s in their design (CAP and PACELC). We then survey commonly used tech-
niques in more detail and discuss our model of how requirements and techniques
are related in Section 3, before we give a broad overview of prominent database
systems by applying our model to them in Section 4. A simple and abstract
decision model for restricting the choice of appropriate NoSQL systems based
on application requirements concludes the paper in Section 5.

2 High-Level System Classi�cation

In order to abstract from implementation details of individual NoSQL sys-
tems, high-level classi�cation criteria can be used to group similar data stores
into categories. In this section, we introduce the two most prominent approaches:
data models and CAP theorem classes.

2.1 Di�erent Data Models
The most commonly employed distinction between NoSQL databases is the

way they store and allow access to data.
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Fig. 2: Document stores are aware of
the internal structure of the stored en-
tity and thus can support queries.

Key-Value Stores. A key-value store consists of a set of key-value pairs with
unique keys. Due to this simple structure, it only supports get and put oper-
ations. As the nature of the stored value is transparent to the database, pure
key-value stores do not support operations beyond simple CRUD (Create, Read,
Update, Delete). Key-value stores are therefore often referred to as schemaless
[44]: Any assumptions about the structure of stored data are implicitly encoded
in the application logic (schema-on-read [31]) and not explicitly de�ned through
a data de�nition language (schema-on-write).

The obvious advantages of this data model lie in its simplicity. The very
simple abstraction makes it easy to partition and query the data, so that the
database system can achieve low latency as well as high throughput. However,
if an application demands more complex operations, e.g. range queries, this
data model is not powerful enough. Figure 1 illustrates how user account data
and settings might be stored in a key-value store. Since queries more complex
than simple lookups are not supported, data has to be analyzed ine�ciently in
application code to extract information like whether cookies are supported or
not (cookies: false).



Document Stores. A document store is a key-value store that restricts val-
ues to semi-structured formats such as JSON1 documents. This restriction in
comparison to key-value stores brings great �exibility in accessing the data. It
is not only possible to fetch an entire document by its ID, but also to retrieve
only parts of a document, e.g. the age of a customer, and to execute queries like
aggregation, query-by-example or even full-text search.

Wide-Column Stores inherit their name from the image that is often used to
explain the underlying data model: a relational table with many sparse columns.
Technically, however, a wide-column store is closer to a distributed multi-level2

sorted map: The �rst-level keys identify rows which themselves consist of key-
value pairs. The �rst-level keys are called row keys, the second-level keys are
called column keys. This storage scheme makes tables with arbitrarily many
columns feasible, because there is no column key without a corresponding value.
Hence, null values can be stored without any space overhead. The set of all
columns is partitioned into so-called column families to colocate columns on
disk that are usually accessed together. On disk, wide-column stores do not
colocate all data from each row, but instead values of the same column family
and from the same row. Hence, an entity (a row) cannot be retrieved by one single
lookup as in a document store, but has to be joined together from the columns of
all column families. However, this storage layout usually enables highly e�cient
data compression and makes retrieving only a portion of an entity very e�cient.
The data are stored in lexicographic order of their keys, so that data that are
accessed together are physically co-located, given a careful key design. As all
rows are distributed into contiguous ranges (so-called tablets) among di�erent
tablet servers, row scans only involve few servers and thus are very e�cient.
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Fig. 3: Data in a wide-column store.

Bigtable [9], which pioneered the wide-column model, was speci�cally devel-
oped to store a large collection of webpages as illustrated in Figure 3. Every
row in the webpages table corresponds to a single webpage. The row key is a
concatenation of the URL components in reversed order and every column key
is composed of the column family name and a column quali�er, separated by a
colon. There are two column families: the �contents� column family with only
one column holding the actual webpage and the �anchor� column family holding

1 The JavaScript Object Notation is a standard format consisting of nested attribute-
value pairs and lists.

2 In some systems (e.g. Bigtable and HBase), multi-versioning is implemented by
adding a timestamp as third-level key.



links to each webpage, each in a separate column. Every cell in the table (i.e.
every value accessible by the combination of row and column key) can be ver-
sioned by timestamps or version numbers. It is important to note that much of
the information of an entity lies in the keys and not only in the values [9].

2.2 Consistency-Availability Trade-O�s: CAP and PACELC
Another de�ning property of a database apart from how the data are stored

and how they can be accessed is the level of consistency that is provided. Some
databases are built to guarantee strong consistency and serializability (ACID3),
while others favour availability (BASE4). This trade-o� is inherent to every
distributed database system and the huge number of di�erent NoSQL systems
shows that there is a wide spectrum between the two paradigms. In the following,
we explain the two theorems CAP and PACELC according to which database
systems can be categorised by their respective positions in this spectrum.

CAP. Like the famous FLP Theorem [19], the CAP Theorem, presented
by Eric Brewer at PODC 2000 [7] and later proven by Gilbert and Lynch [21],
is one of the truly in�uential impossibility results in the �eld of distributed
computing, because it places an ultimate upper bound on what can possibly
be accomplished by a distributed system. It states that a sequentially consistent
read/write register5 that eventually responds to every request cannot be realised
in an asynchronous system that is prone to network partitions. In other words,
it can guarantee at most two of the following three properties at the same time:

� Consistency (C): Reads and writes are always executed atomically and
are strictly consistent (linearizable [26]). Put di�erently, all clients have the
same view on the data at all times.

� Availability (A): Every non-failing node in the system can always accept
read and write requests by clients and will eventually return with a mean-
ingful response, i.e. not with an error message.

� Partition-tolerance (P): The system upholds the previously displayed
consistency guarantees and availability in the presence of message loss be-
tween the nodes or partial system failure.

Brewer argues that a system can be both available and consistent in nor-
mal operation, but in the presence of a system partition, this is not possible: If
the system continues to work in spite of the partition, there is some non-failing
node that has lost contact to the other nodes and thus has to decide to either
continue processing client requests to preserve availability (AP, eventual con-
sistent systems) or to reject client requests in order to uphold consistency
guarantees (CP). The �rst option violates consistency, because it might lead to
stale reads and con�icting writes, while the second option obviously sacri�ces
availability. There are also systems that usually are available and consistent, but
fail completely when there is a partition (CA), for example single-node systems.
It has been shown that the CAP-theorem holds for any consistency property

3 ACID [23]: Atomicity, Consistency, Isolation, Duration
4 BASE [42]: Basically Available, Soft-state, Eventually consistent
5 A read/write register is a data structure with only two operations: setting a speci�c
value (set) and returning the latest value that was set (get).



that is at least as strong as causal consistency, which also includes any recency
bounds on the permissible staleness of data (∆-atomicity) [37]. Serializability as
the correctness criterion of transactional isolation does not require strong con-
sistency. However, similar to consistency, serializability can also not be achieved
under network partitions [15].

The classi�cation of NoSQL systems as either AP, CP or CA vaguely re�ects
the individual systems' capabilities and hence is widely accepted as a means for
high-level comparisons. However, it is important to note that the CAP Theorem
actually does not state anything on normal operation; it merely tells us whether
a system favors availability or consistency in the face of a network partition.
In contrast to the FLP-Theorem, the CAP theorem assumes a failure model
that allows arbitrary messages to be dropped, reordered or delayed inde�nitely.
Under the weaker assumption of reliable communication channels (i.e. messages
always arrive but asynchronously and possibly reordered) a CAP-system is in
fact possible using the Attiya, Bar-Noy, Dolev algorithm [2], as long as a majority
of nodes are up6.

PACELC. This lack of the CAP Theorem is addressed in an article by Daniel
Abadi [1] in which he points out that the CAP Theorem fails to capture the trade-
o� between latency and consistency during normal operation, even though it has
proven to be much more in�uential on the design of distributed systems than
the availability-consistency trade-o� in failure scenarios. He formulates PACELC
which uni�es both trade-o�s and thus portrays the design space of distributed
systems more accurately. From PACELC, we learn that in case of a Partition,
there is an Availability-Consistency trade-o�; Else, i.e. in normal operation,
there is a Latency-Consistency trade-o�.

This classi�cation basically o�ers two possible choices for the partition sce-
nario (A/C) and also two for normal operation (L/C) and thus appears more
�ne-grained than the CAP classi�cation. However, many systems cannot be as-
signed exclusively to one single PACELC class and one of the four PACELC
classes, namely PC/EL, can hardly be assigned to any system.

3 Techniques

Every signi�cantly successful database is designed for a particular class of
applications, or to achieve a speci�c combination of desirable system properties.
The simple reason why there are so many di�erent database systems is that it is
not possible for any system to achieve all desirable properties at once. Traditional
SQL databases such as PostgreSQL have been built to provide the full functional
package: a very �exible data model, sophisticated querying capabilities including
joins, global integrity constraints and transactional guarantees. On the other end
of the design spectrum, there are key-value stores like Dynamo that scale with
data and request volume and o�er high read and write throughput as well as
low latency, but barely any functionality apart from simple lookups.

6 Therefore, consensus as used for coordination in many NoSQL systems either na-
tively [4] or through coordination services like Chubby and Zookeeper [28] is even
harder to achieve with high availability than strong consistency [19].



In this section, we highlight the design space of distributed database systems,
concentrating on sharding, replication, storage management and query process-
ing. We survey the available techniques and discuss how they are related to
di�erent functional and non-functional properties (goals) of data management
systems. In order to illustrate what techniques are suitable to achieve which
system properties, we provide the NoSQL Toolbox (Figure 4) where each
technique is connected to the functional and non-functional properties it enables
(positive edges only).

Functional Techniques Non-Functional
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ACID Transactions

Conditional or Atomic Writes
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Sorting

Filter Queries
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Aggregation and Analytics
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In-Memory Storage
Append-Only Storage

Storage Management
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Read Availability

Write Availability
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Write Scalability
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Data Scalability

Global Secondary Indexing
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Query Planning
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Materialized Views

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

Fig. 4: The NoSQL Toolbox: It connects the techniques of NoSQL databases with
the desired functional and non-functional system properties they support.

3.1 Sharding

Several distributed relational database systems such as Oracle RAC or IBM
DB2 pureScale rely on a shared-disk architecture where all database nodes
access the same central data repository (e.g. a NAS or SAN). Thus, these systems
provide consistent data at all times, but are also inherently di�cult to scale. In
contrast, the (NoSQL) database systems focused in this paper are built upon a
shared-nothing architecture, meaning each system consists of many servers
with private memory and private disks that are connected through a network.
Thus, high scalability in throughput and data volume is achieved by sharding
(partitioning) data across di�erent nodes (shards) in the system.

There are three basic distribution techniques: range-sharding, hash-sharding
and entity-group sharding. To make e�cient scans possible, the data can be
partitioned into ordered and contiguous value ranges by range-sharding. How-
ever, this approach requires some coordination through a master that manages
assignments. To ensure elasticity, the system has to be able to detect and resolve
hotspots automatically by further splitting an overburdened shard.



Range sharding is supported by wide-column stores like BigTable, HBase or
Hypertable [49] and document stores, e.g. MongoDB, RethinkDB, Espresso [43]
and DocumentDB [46]. Another way to partition data over several machines is
hash-sharding where every data item is assigned to a shard server according
to some hash value built from the primary key. This approach does not require
a coordinator and also guarantees the data to be evenly distributed across the
shards, as long as the used hash function produces an even distribution. The
obvious disadvantage, though, is that it only allows lookups and makes scans
unfeasible. Hash sharding is used in key-value stores and is also available in
some wide-coloumn stores like Cassandra [34] or Azure Tables [8].

The shard server that is responsible for a record can for example be de-
termined as serverid = hash(id) mod servers. However, this hashing scheme
requires all records to be reassigned every time a new server joins or leaves,
because it changes with the number of shard servers (servers), so that it is ac-
tually not used in elastic systems like Dynamo, Riak or Cassandra, which allow
additional resources to be added on-demand and again be removed when dis-
pensable. Instead, elastic systems use consistent hashing [30] where only a
fraction of the data have to be reassigned upon such system changes.

Entity-group sharding is a data partitioning scheme with the goal of
enabling single-partition transactions on co-located data. The partitions are
called entity-groups and either explicitly declared by the application (e.g. in
G-Store [14] and MegaStore [4]) or derived from transactions' access patterns
(e.g. in Relational Cloud [13] and Cloud SQL Server [5]). If a transaction accesses
data that spans more than one group, data ownership can be transferred between
entity-groups or the transaction manager has to fallback to more expensive multi-
node transaction protocols.

3.2 Replication
In terms of CAP, conventional RDBMSs are often CA systems run in single-

server mode: The entire system becomes unavailable on machine failure. And so
system operators secure data integrity and availability through expensive, but
reliable high-end hardware. In contrast, NoSQL systems like Dynamo, BigTable
or Cassandra are designed for data and request volumes that cannot possibly
be handled by one single machine, and therefore they run on clusters consisting
of thousands of servers7. Since failures are inevitable and will occur frequently
in any large-scale distributed system, the software has to cope with them on
a daily basis [24]. In 2009, Google fellow Je� Dean stated [16] that a typical
new cluster at Google encounters thousands of hard drive failures, 1,000 single-
machine failures, 20 rack failures and several network partitions due to expected
and unexpected circumstances in its �rst year alone. Many more recent cases of
network partitions and outages in large cloud data centers have been reported
[3]. Replication allows the system to maintain availability and durability in the
face of such errors. But storing the same records on di�erent machines (replica
servers) in the cluster introduces the problem of synchronization between them

7 Low-end hardware is used, because it is substantially more cost-e�cient than high-
end hardware [27, Section 3.1].



and thus a trade-o� between consistency on the one hand and latency and
availability on the other.

Gray et al. [22] propose a two-tier classi�cation of di�erent replication strate-
gies according to when updates are propagated to replicas and where updates
are accepted. There are two possible choices on tier one (�when�): Eager (syn-
chronous) replication propagates incoming changes synchronously to all replicas
before a commit can be returned to the client, whereas lazy (asynchronous)
replication applies changes only at the receiving replica and passes them on
asynchronously. The great advantage of eager replication is consistency among
replicas, but it comes at the cost of higher write latency due to the need to wait
for other replicas and impaired availability [22]. Lazy replication is faster, be-
cause it allows replicas to diverge; as a consequence, stale data might be served.
On the second tier (�where�), again, two di�erent approaches are possible: Ei-
ther a master-slave (primary copy) scheme is pursued where changes can only
be accepted by one replica (the master) or, in a update anywhere (multi-

master) approach, every replica can accept writes. In master-slave protocols,
concurrency control is not more complex than in a distributed system without
replicas, but the entire replica set becomes unavailable, as soon as the master
fails. Multi-master protocols require complex mechanisms for prevention or de-
tection and reconciliation of con�icting changes. Techniques typically used for
these purposes are versioning, vector clocks, gossiping and read repair (e.g. in
Dynamo [18]) and convergent or commutative datatypes [45] (e.g. in Riak).

Basically, all four combinations of the two-tier classi�cation are possible.
Distributed relational systems usually perform eager master-slave replication to
maintain strong consistency. Eager update anywhere replication as for example
featured in Google's Megastore su�ers from a heavy communication overhead
generated by synchronisation and can cause distributed deadlocks which are ex-
pensive to detect. NoSQL database systems typically rely on lazy replication,
either in combination with the master-slave (CP systems, e.g. HBase and Mon-
goDB) or the update anywhere approach (AP systems, e.g. Dynamo and Cas-
sandra). Many NoSQL systems leave the choice between latency and consistency
to the client, i.e. for every request, the client decides whether to wait for a re-
sponse from any replica to achieve minimal latency or for a certainly consistent
response (by a majority of the replicas or the master) to prevent stale data.

An aspect of replication that is not covered by the two-tier scheme is the
distance between replicas. The obvious advantage of placing replicas near one
another is low latency, but close proximity of replicas might also reduce the
positive e�ects on availability; for example, if two replicas of the the same data
item are placed in the same rack, the data item is not available on rack failure
in spite of replication. An alternative technique for latency reduction is used
in Orestes [20], where data is cached close to applications using web caching
infrastructure and cache coherence protocols.

Geo-replication can protect the system against complete data loss and im-
prove read latency for distributed access from clients. Eager geo-replication, as
implemented in Google's Megastore [4], Spanner [12], MDCC [32] and Mencius



[38] achieve strong consistency at the cost of higher write latencies (typically
100ms [12] to 600ms [4]). With lazy geo-replication as in Dynamo [18], PNUTS
[11], Walter [47], COPS [36], Cassandra [34] and BigTable [9] recent changes may
be lost, but the system performs better and remains available during partitions.
Charron-Bost et al. [10, Chapter 12] and Öszu and Valduriez [41, Chapter 13]
provide a comprehensive discussion of database replication.

3.3 Storage Management
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Fig. 5: The storage pyramid and its role in NoSQL systems.

For best performance, database systems need to be optimized for the storage
media they employ to serve and persist data. These are typically main mem-
ory (RAM), solid-state drives (SSDs) and spinning disk drives (HDDs) that can
be used in any combination. Unlike RDBMSs in enterprise setups, distributed
NoSQL databases avoid specialized shared-disk architectures in favor of shared-
nothing clusters based on commodity servers (employing commodity storage
media). Storage devices are typically visualized as a �storage pyramid� (see Fig-
ure 5) [25]. There is also a set of transparent caches (e.g. L1-L3 CPU caches and
disk bu�ers, not shown in the Figure), that are only implicitly leveraged through
well-engineered database algorithms that promote data locality. The very di�er-
ent cost and performance characteristics of RAM, SSD and HDD storage and
the di�erent strategies to leverage their strengths (storage management) are one
reason for the diversity of NoSQL databases. Storage management has a spatial
dimension (where to store data) and a temporal dimension (when to store data).
Update-in-place and append-only-IO are two complementary spatial techniques
of organizing data; in-memory prescribes RAM as the location of data, whereas
logging is a temporal technique that decouples main memory and persistent
storage and thus provides control over when data is actually persisted.

In their seminal paper �the end of an architectural era� [48], Stonebraker et
al. have found that in typical RDBMSs, only 6.8% of the execution time is spent
on �useful work�, while the rest is spent on:

� bu�er management (34.6%), i.e. caching to mitigate slower disk access



� latching (14.2%), to protect shared data structures from race conditions
caused by multi-threading

� locking (16.3%), to guarantee logical isolation of transactions
� logging (11.9%), to ensure durability in the face of failures
� hand-coded optimizations (16.2%)

This motivates that large performance improvements can be expected if RAM
is used as primary storage (in-memory databases [50]). The downside are high
storage costs and lack of durability � a small power outage can destroy the
database state. This can be solved in two ways: The state can be replicated
over n in-memory server nodes protecting against n − 1 single-node failures
(e.g. HStore, VoltDB [29]) or by logging to durable storage (e.g. Redis or SAP
Hana). Through logging, a random write access pattern can be transformed to a
sequential one comprised of received operations and their associated properties
(e.g. redo information). In most NoSQL systems, the commit rule for logging is
respected, which demands every write operation that is con�rmed as successful
to be logged and the log to be �ushed to persistent storage. In order to avoid
the rotational latency of HDDs incurred by logging each operation individually,
log �ushes can be batched together (group commit) which slightly increases the
latency of individual writes, but drastically improves throughput.

SSDs and more generally all storage devices based on NAND �ash memory
di�er substantially from HDDs in various aspects: �(1) asymmetric speed of read
and write operations, (2) no in-place overwrite � the whole block must be erased
before overwriting any page in that block, and (3) limited program/erase cycles�
[40]. Thus, a database system's storage management must not treat SSDs and
HDDs as slightly slower, persistent RAM, since random writes to an SSD are
roughly an order of magnitude slower than sequential writes. Random reads,
on the other hand, can be performed without any performance penalties. There
are some database systems (e.g. Oracle Exadata, Aerospike) that are explicitly
engineered for these performance characteristics of SSDs. In HDDs, both random
reads and writes are 10-100 times slower than sequential access. Logging hence
suits the strengths of SSDs and HDDs which both o�er a signi�cantly higher
throughput for sequential writes.

For in-memory databases, an update-in-place access pattern is ideal: It
simpli�es the implementation and random writes to RAM are essentially equally
fast as sequential ones, with small di�erences being hidden by pipelining and the
CPU-cache hierarchy. However, RDBMSs and many NoSQL systems (e.g. Mon-
goDB) employ an update-in-place update pattern for persistent storage, too.
To mitigate the slow random access to persistent storage, main memory is usu-
ally used as a cache and complemented by logging to guarantee durability. In
RDBMSs, this is achieved through a complex bu�er pool which not only employs
cache-replace algorithms appropriate for typical SQL-based access patterns, but
also ensures ACID semantics. NoSQL databases have simpler bu�er pools that
pro�t from simpler queries and the lack of ACID transactions. The alternative to
the bu�er pool model is to leave caching to the OS through virtual memory (e.g.
employed in MongoDB's MMAP storage engine). This simpli�es the database



architecture, but has the downside of giving less control over which data items
or pages reside in memory and when they get evicted. Also read-ahead (spec-
ulative reads) and write-behind (write bu�ering) transparently performed with
OS bu�ering lack sophistication as they are based on �le system logics instead
of database queries.

Append-only storage (also referred to as log-structuring) tries to maxi-
mize throughput by writing sequentially. Although log-structured �le systems
have a long research history, append-only I/O has only recently been popular-
ized for databases by BigTable's use of Log-Structured Merge (LSM) trees [9]
consisting of an in-memory cache, a persistent log and immutable, periodically
written storage �les. LSM trees and variants like Sorted Array Merge Trees
(SAMT) and Cache-Oblivious Look-ahead Arrays (COLA) have been applied in
many NoSQL systems (Cassandra, CouchDB, LevelDB, RethinkDB, RocksDB,
In�uxDB, TokuDB) [31]. Designing a database to achieve maximum write perfor-
mance by always writing to a log is rather simple, the di�culty lies in providing
fast random and sequential reads. This requires an appropriate index structure
that is either permanently updated as a copy-on-write (COW) data structure
(e.g. CouchDB's COW B-trees) or only periodically persisted as an immutable
data structure (e.g. in BigTable-style systems). An issue of all log-structured
storage approaches is costly garbage collection (compaction) to reclaim space of
updated or deleted items.

3.4 Query Processing

The querying capabilities of a NoSQL database mainly follow from its distri-
bution model, consistency guarantees and data model. Primary key lookup,
i.e. retrieving data items by a unique ID, is supported by every NoSQL system,
since it is compatible to range- as well as hash-partitioning. Filter queries
return all items (or projections) that meet a predicate speci�ed over the prop-
erties of data items from a single table. In their simplest form, they can be
performed as �ltered full-table scans. For hash-partitioned databases this implies
a scatter-gather pattern where each partition performs the predicated scan and
results are merged. For range-partitioned systems, any conditions on the range
attribute can be exploited to select partitions.

To circumvent the ine�ciencies of O(n) scans, secondary indexes can be em-
ployed. These can either be local secondary indexes that are managed in
each partition or global secondary indexes that index data over all partitions
[4]. As the global index itself has to be distributed over partitions, consistent
secondary index maintenance would necessitate slow and potentially unavail-
able commit protocols. Therefore in practice, most systems only o�er eventual
consistency for these indexes (e.g. Megastore, Google AppEngine Datastore, Dy-
namoDB) or do not support them at all (e.g. HBase, Azure Tables). When exe-
cuting global queries over local secondary indexes the query can only be targeted
to a subset of partitions if the query predicate and the partitioning rules intersect.
Otherwise, results have to be assembled through scatter-gather. For example, a
user table with range-partitioning over an age �eld can service queries that have
an equality condition on age from one partition whereas queries over names need



to be evaluated at each partition. A special case of global secondary indexing
is full-text search, where selected �elds or complete data items are fed into ei-
ther a database-internal inverted index (e.g. MongoDB) or to an external search
platform such as ElasticSearch or Solr (Riak Search, DataStax Cassandra).

Query planning is the task of optimizing a query plan to minimize ex-
ecution costs [25]. For aggregations and joins, query planning is essential as
these queries are very ine�cient and hard to implement in application code.
The wealth of literature and results on relational query processing is largely dis-
regarded in current NoSQL systems for two reasons. First, the key-value and
wide-column model are centered around CRUD and scan operations on primary
keys which leave little room for query optimization. Second, most work on dis-
tributed query processing focuses on OLAP workloads that favor throughput
over latency whereas single-node query optimization is not easily applicable for
partitioned and replicated databases. However, it remains an open research chal-
lenge to generalize the large body of applicable query optimization techniques
especially in the context of document databases8.

In-database analytics can be performed either natively (e.g. in MongoDB,
Riak, CouchDB) or through external analytics platforms such as Hadoop, Spark
and Flink (e.g. in Cassandra and HBase). The prevalent native batch analyt-
ics abstraction exposed by NoSQL systems is MapReduce [17]. Due to I/O,
communication overhead and limited execution plan optimization, these batch-
and micro-batch-oriented approaches have high response times. Materialized
views are an alternative with lower query response times. They are declared at
design time and continuously updated on change operations (e.g. in CouchDB
and Cassandra). However, similar to global secondary indexing, view consistency
is usually relaxed in favor of fast, highly-available writes, when the system is dis-
tributed. As only few database systems come with built-in support for ingesting
and querying unbounded streams of data, near-real-time analytics pipelines
commonly implement either the Lambda Architecture [39] or the Kappa
Architecture [33]: The former complements a batch processing framework like
Hadoop MapReduce with a stream processor such as Storm [6] and the latter
exclusively relies on stream processing and forgoes batch processing altogether.

4 System Case Studies

In this section, we provide a qualitative comparison of some of the most
prominent key-value, document and wide-column stores. We present the results
in strongly condensed comparisons and refer to the documentations of the in-
dividual systems for in-detail information. The proposed NoSQL Toolbox (see
Figure 4, p. 6) is a means of abstraction that can be used to classify database
systems along three dimensions: functional requirements, non-functional require-
ments and the techniques used to implement them. We argue that this classi�-
cation characterizes many database systems well and thus can be used to mean-
ingfully contrast di�erent database systems: Table 1 shows a direct comparison
8 Currently only RethinkDB can perform general θ-joins. MongoDB's aggregation
framework has support for left-outer equi-joins in its aggregation framework and
CouchDB allows joins for pre-declared map-reduce views.



of MongoDB, Redis, HBase, Riak, Cassandra and MySQL in their respective
default con�gurations. A more verbose comparison of central system properties
is presented in Table 2 (see p. 15).
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Redis x x x x x x x x x x x x x x

HBase x x x x x x x x x x x x x x x x x x

Riak x x x x x x x x x x x x x x x x x x x x x x

Cassandra x x x x x x x x x x x x x x x x x x x x x x x x

MySQL x x x x x x x x x x x x x x x x x x x

Table 1: A direct comparison of functional requirements, non-functional require-
ments and techniques among MongoDB, Redis, HBase, Riak, Cassandra and
MySQL according to our NoSQL Toolbox.

The comparison elucidates how SQL and NoSQL databases are designed to
ful�ll very di�erent needs: RDBMSs provide an unmatched level of functionality
whereas NoSQL databases excel on the non-functional side through scalability,
availability, low latency and/or high throughput. However, there are also large
di�erences among the NoSQL databases. Riak and Cassandra, for example, can
be con�gured to ful�ll many non-functional requirements, but are only eventu-
ally consistent and do not feature many functional capabilities apart from data
analytics and, in case of Cassandra, conditional updates. MongoDB and HBase,
on the other hand, o�er stronger consistency and more sophisticated functional
capabilities such as scan queries and � only MongoDB: � �lter queries, but do
not maintain read and write availability during partitions and tend to display
higher read latencies. Redis, as the only non-partitioned system in this compar-
ison apart from MySQL, shows a special set of trade-o�s centered around the
ability to maintain extremely high throughput at low-latency using in-memory
data structures and asynchronous master-slave replication.

5 Conclusions

Choosing a database system always means to choose one set of desirable
properties over another. To break down the complexity of this choice, we present
a binary decision tree in Figure 6 that maps trade-o� decisions to example
applications and potentially suitable database systems. The leaf nodes cover
applications ranging from simple caching (left) to Big Data analytics (right).
Naturally, this view on the problem space is not complete, but it vaguely points
towards a solution for a particular data management problem. The �rst split
in the tree is along the access pattern of applications: They either rely on fast
lookups only (left half) or require more complex querying capabilities (right
half). The fast lookup applications can be distinguished further by the data
volume they process: If the main memory of one single machine can hold all the
data, a single-node system like Redis or Memcache probably is the best choice,



depending on whether functionality (Redis) or simplicity (Memcache) is favored.
If the data volume is or might grow beyond RAM capacity or is even unbounded,
a multi-node system that scales horizontally might be more appropriate. The
most important decision in this case is whether to favor availability (AP) or
consistency (CP) as described by the CAP theorem. Systems like Cassandra and
Riak can deliver an always-on experience, while systems like HBase, MongoDB
and DynamoDB deliver strong consistency.

Access

Fast Lookups

RAM

Redis
Memcache

Unbounded

AP CP

Cassandra
Riak

Voldemort
Aerospike

HBase
MongoDB
CouchBase
DynamoDB

Complex Queries

HDD-Size Unbounded

Analytics

MongoDB
RethinkDB

HBase,Accumulo
ElasticSeach, Solr

Hadoop, Spark
Parallel DWH

Cassandra, HBase
Riak, MongoDB

ACID Availability

RDBMS
Neo4j

RavenDB
MarkLogic

CouchDB
MongoDB
SimpleDB

Ad-hoc

Cache
Shopping-

basket
Order

History
OLTP Website

Social
Network

Big Data

VolumeVolume

CAP Query PatternConsistency

Example Applications 

Fig. 6: A decision tree for mapping requirements to (NoSQL) database systems.

The right half of the tree covers applications requiring more complex queries
than simple lookups. Here, too, we �rst distinguish the systems by the data
volume they have to handle according to whether single-node systems are fea-
sible (HDD-size) or distribution is required (unbounded volume). For common
OLTP workloads on moderately large data volumes, traditional RDBMSs or
graph databases like Neo4J are optimal, because they o�er ACID semantics.
If, however, availability is of the essence, distributed systems like MongoDB,
CouchDB or DocumentDB are preferrable.

If the data volume exceeds the limits of a single machine, the choice of the
right system depends on the prevalent query pattern: When complex queries have
to be optimised for latency, as for example in social networking applications,
MongoDB is very attractive, because it facilitates expressive ad-hoc queries.
HBase and Cassandra are also useful in such a scenario, but excel at throughput-
optimised Big Data analytics, when combined with Hadoop.

In summary, we are convinced that the proposed top-down model is an e�ec-
tive decision support to �lter the vast amount of NoSQL database systems based
on central requirements. The NoSQL Toolbox furthermore provides a mapping
from functional and non-functional requirements to common implementation
techniques to categorize the constantly evolving NoSQL space.
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