
The Cache Sketch: Revisiting Expiration-based Caching in
the Age of Cloud Data Management

Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath,
Steffen Friedrich, Norbert Ritter

Database and Information Systems Group
University of Hamburg

{gessert, xschaars, wingerath, friedrich, ritter}@informatik.uni-hamburg.de

Abstract: The expiration-based caching model of the web is generally considered ir-
reconcilable with the dynamic workloads of cloud database services, where expiration
dates are not known in advance. In this paper, we present the Cache Sketch data struc-
ture which makes expiration-based caching of database records feasible with rich tun-
able consistency guarantees. The Cache Sketch enables database services to leverage
the large existing caching infrastructure of content delivery networks, browser caches
and web caches to provide low latency and high scalability. The Cache Sketch employs
Bloom filters to create compact representations of potentially stale records to transfer
the task of cache coherence to clients. Furthermore, it also minimizes the number of in-
validations the service has to perform on caches that support them (e.g., CDNs). With
different age-control policies the Cache Sketch achieves very high cache hit ratios with
arbitrarily low stale read probabilities. We present the Constrained Adaptive TTL Es-
timator to provide cache expiration dates that optimize the performance of the Cache
Sketch and invalidations. To quantify the performance gains and to derive workload-
optimal Cache Sketch parameters, we introduce the YCSB Monte-Carlo Caching Sim-
ulator (YMCA), a generic framework for simulating the performance and consistency
characteristics of any caching and replication topology. We also provide empirical ev-
idence for the efficiency of the Cache Sketch construction and the real-world latency
reductions of database workloads under CDN-caching.

1 Introduction

In today’s cloud data management, most database-as-a-service (DBaaS) systems are ex-
posed through REST/HTTP interfaces. REST APIs make it easy for applications to in-
teract with database services and allow service providers and application designers to
leverage the mature, well-researched HTTP protocol and infrastructure. This is partic-
ularly true for ”NoSQL” systems where the central operations create, read, update, delete
(CRUD) map well to REST and HTTP semantics. Yet today, to the best of our knowledge,
no DBaaS is capable of exploiting the expiration-based HTTP caching model and its rich,
globally distributed content-delivery infrastructure. The reason lies in the impossibility to
predict the correct expiration date for database records - any unexpected write operation
would entail reads from stale cached copies that did not yet expire. The key insight to the
Cache Sketch solution presented in this paper is that the task of cache invalidation can be

shifted from the server to the client using an appropriate data structure.

Caching support in database REST APIs is not only critical for applications that are geo-
graphically distributed from the physical location of the database service. It is even more
important for mobile and web applications whose performance is governed almost exclu-
sively by latency. Large-scale web sites therefore allocate significant resources to manu-
ally optimize caching of static content like images, scripts and style sheets. However, since
the recent shift to smarter clients and single-page applications, dynamic database content
is increasingly requested in end devices directly, either through data APIs of custom ap-
plication servers or ”backend-as-a-service” systems. This makes data requests extremely
latency critical, as they block the user experience. Various studies have quantified the dra-
matic effects of latency on user satisfaction. For instance, Amazon has found that 100ms
of additional latency decrease revenue by 1%. Google similarly discovered that 500ms of
additional page load time decrease traffic by 20%.

To tackle this problem of significant practical relevance, we introduce a DBaaS caching
methodology that employs automatic caching of database records requested through a
REST/HTTP API. Cache consistency is ensured using a dual approach: expiration-based
web caches (browser/device caches, forward proxy caches, ISP caches) are kept coher-
ent through client-side revalidations enabled by the Cache Sketch data structure, whereas
invalidation-based web caches are invalidated by purge requests issued by the database
service. The proposed caching methodology is applicable to any data-serving cloud ser-
vice, but particularly well-suited for database- and backend-as-a-service systems. The
client Cache Sketch is a Bloom filter of potentially stale records maintained in the database
service. To determine whether a record can safely be fetched from caches, clients query
the Cache Sketch before reads. If the record’s id is contained in the cache sketch, a reval-
idation request is sent, as intermediate caches might hold a stale copy. The issued HTTP
revalidation request instructs caches to check, whether the database record has a different
version than the locally cached copy. If a false positive occurs, a harmless revalidation on
a non-stale record is performed, which is similar to a cache miss.

Clients leverage the Cache Sketch for three different goals: fast application and session
starts (cached initialization), cached reads with consistency guarantees (bounded stale-
ness) and low-latency transactions (conflict-avoidant optimistic transactions). For cached
initialization, clients transparently store every fetched record in the client cache (usually
the browser cache). At the begin of a new session or page visit, the Cache Sketch is trans-
ferred, so clients can check which cached copies from the last session are still up-to-date.
The number of necessary requests is thus reduced to the cache miss ratio of intermediate
caches. To maintain ∆-bounded staleness, the Cache Sketch is refreshed in intervals of
∆. The interval constitutes a controllable upper bound on the staleness of loaded records.
Similarly, conflict-avoidant optimistic transactions load the Cache Sketch at transaction
begin. Subsequent transactional reads exploit cached records, reducing the overall dura-
tion and associated abort probability of the transaction.

By optimistically caching all records and employing the Cache Sketch to only revalidate
stale records, the same cache hit ratio is achieved as if the time to the next write was known
in advance. A record can only be removed from the Cache Sketch once it is sure to have
been expired in all caches. Thus, precise estimations of expiration times impact cache hit

ratios after writes as well as the number of necessary invalidations. To tune the inherent
trade-off between cache hits, stale reads, invalidations and false positives towards a given
preference, we present the Constrained Adaptive TTL Estimator (CATE) that complements
the Cache Sketch by adjusting cache expiration to optimize the trade-off.

The contributions of this paper are threefold:

• We propose the Cache Sketch as a data structure to enable the use of expiration-
and invalidation-based web caching for cloud data management systems to combine
the latency benefits of caching with rich consistency guarantees.

• We describe the Constrained Adapative TTL Estimation (CATE) algorithm that
computes record expiration dates to minimize stale read probabilities and invali-
dations while maximizing cache hits.

• We present the Monte-Carlo caching simulation Framework YMCA that allows to
analyze and optimize caching strategies and Cache Sketch parameters for pluggable
network, database and caching topologies.

The paper is structured as follows. Section 2 presents the Cache Sketch and its proper-
ties and effects. Section 3 outlines the TTL estimation problem and a possible solution.
Section 4 introduces the YMCA simulation frameworks and presents simulated and real
empirical results for the proposed combination of web caching and cloud data manage-
ment. Sections 5 examines related work and Section 6 concludes.

2 Staleness Avoidance through Cache Sketches

The expiration-based caching model of HTTP was deliberately designed for scalability
and simplicity. It therefore lacks cache coherence protocols and assumes a static TTL
(time to live) indicating the time span for which a resource is valid, allowing every cache
to keep a copy. This model works well for immutable content, for example a particular
version of JavaScript library. With the rise of REST APIs for cloud services however, this
model fails in its naive form - TTLs of dynamic content, in particular database records and
query results are not known in advance. This has lead to database interfaces that forbid
caching in the first place as otherwise staleness would be uncontrollable.

Figure 1 shows an architectural overview of how our Cache Sketch approach addresses
this problem. Every cache in the request path serves cached database records requested by
their key to the client, which can either be an end-user’s browser, a mobile application or an
application server. The Bloom filter of the client Cache Sketch is queried to send a request
either as normal request (record not contained) or a revalidation (record contained). The
revalidation forces caches to update their copy using an HTTP request conditioned over
the record’s version (Etag).

The database service tracks the highest TTLs provided at a cache miss. On a subsequent
write, the record is added to the Counting Bloom filter of the server Cache Sketch and

Client

Expiration-
based Caches

Invalidation-
based Caches

Server Cache Sketch

St
al

en
es

s-
M

in
im

iz
at

io
n

In
va

lid
at

io
n

-M
in

im
iz

at
io

n

10201040

10101010

Counting
Bloom Filter

Non-expired
Record Keys

Request
Path

Server/DB

Invalidations,
Records Report Expirations

and Writes

Needs Invalidation?

Client Cache Sketch

at
connect

Periodic
every Δ

seconds

at
transaction

begin

Cache
Hits

10101010 Bloom filter
Needs Revalidation?

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

1

2 3

4

Cached
Initialization

2
Δ-Bounded
Staleness

1

3
Conflict-avoidant
Optimistic Transactions

4
Invalidation
Minimization

Figure 1: Architectural overview of the client and server Cache Sketch.

removed when the record is expired. The database service is furthermore responsible for
purging records from invalidation-based caches (CDNs and reverse proxy caches), which
allows them to answer revalidations. To minimize invalidation broadcasts, purges are only
sent, if the server Cache Sketch reports a record as non-expired. It is important to note,
that this scheme does not require any modifications of the HTTP protocol or web cache
behavior. The proposed Cache Sketch approach is not specific to a particular database
service architecture and can be realized either directly in the nodes of database system or
as a tier of stateless REST servers exposing the database. We chose the latter approach,
building on the database-independent ORESTES middleware [GBR14].

There are several advantages of caching database records close to clients. First, cache
hits have lower latency and higher throughput than uncached requests, as TCP throughput
is inversely proportional to the round-trip time [Gri13]. Second, the database service is
under lower load, as it only has to handle write requests and cache misses. Third, clients
profit from requests of other clients, as all caches except the browser/device cache are

shared. Fourth, flash crowds, i.e. load spikes caused by unexpected and sudden popularity,
are mitigated by caching and do not bring down the database service [FFM04]. Fifth,
temporary unavailability of the database service can be hidden for reads by letting CDNs
and reverse proxies serve cached records while the service is unreachable.

2.1 The Client Cache Sketch

For each potentially non-expired record x, the client Cache Sketch has to contain its key
keyx. For now, we will only consider key/id lookups - the most common access pattern
in key-value, document and wide-column stores - and discuss how the scheme can be
extended to query results, later. As shown in Figure 2, a read on a key is performed by
querying the Bloom filter bt of the client Cache Sketch cct that was generated at time t. The
key is hashed using k independent uniformly distributed hash functions that map from the
key domain to [1,m], where m is the bit array size of bt. If all bits h1(key), . . . , hk(key)
equal 1, the record is contained and has to be considered stale.

k hash functions m Bloom filter bits

1 0 0 1 1 0 1 1
h1

hk

...keyfind(key) Bits = 1

Client Cache Sketch

no

yes

GET request

Revalidation

Cache

Hit

Miss

key

key

Figure 2: Database read using the Cache Sketch.

Theorem 1 deducts the central guarantee offered by the Cache Sketch using the time-based
consistency property ∆-atomicity [GLS11]. ∆-atomic semantics assert that every value
becomes visible during the first ∆ time units after the acknowledgement of its write.

Theorem 1. Let cct be the client Cache Sketch generated at time t, containing the key keyx
of every record x that was written before it expired in all caches, i.e. every x for which
holds that ∃ r(x, tr, TTL), w(x, tw) : tr + TTL > t > tw > tr where r(x, tr, TTL) is a
read (cache miss) on x at time tr, TTL is the TTL provided for that read and w(x, tw) is
a write on x at time tw.

A read on record x performed at time tx using cct satisfies ∆-atomicity with ∆ = tx − t,
i.e. the read is guaranteed to see only records that are at most ∆ = tx− t time units stale.

Proof. Consider there was a read issued at time tx using cct that returned a record x that
was stale for ∆ > tx − t. This implies that x must have been written at a time tw < t
as otherwise ∆ < tx − t. Now, if there has been no previous read r(x, tr, TTL) with
tr + TTL > tx then x could not have been stale for at least tx − t time units. If there has

been such a read, by the construction of cct the record’s key would have been contained in
it and the read (a revalidation) could not have been stale.

Theorem 1 states, that clients can tune the desired degree of consistency by controlling the
age ∆ of the Cache Sketch: the age directly defines ∆-atomicity. This guarantee relies on
the linearizability of the underlying database system, i.e. writes are assumed to be directly
visible to uncached reads. If the database is only eventually consistent with ∆db-atomicity,
the guarantee is weakened to (∆ + ∆db)-atomicity1. Similarly, if the invalidation-based
caches only support asynchronous invalidations (which is typical for real-world CDNs
[PB08]) with ∆c-atomicity, the consistency guarantee becomes (∆ + ∆c)-atomicity2. If
∆c is an undesired source of uncertainty, ∆-atomicity can be established in two ways.
First, invalidation-based caches can be treated as pure expiration-based caches by not let-
ting them answer revalidation requests. The trade-off is that this increases read latency and
the load on the database service. Second, invalidations can be performed synchronously.
This is a good option for reverse-proxy caches located in the network of the database ser-
vice. Here, the trade-off is that cache misses have higher latency and can be blocked by
the unavailability of a cache node (no partition tolerance).

Definition 1. A client follows cached initialization, if all initial reads are performed using
the freshly loaded Cache Sketch cct . A read at tnow follows ∆-bounded staleness, if it only
uses cct if tnow < t + ∆. A conflict-avoidant optimistic transaction started at ts uses ccts
for transactional reads.

Definition 1 introduces three client-driven age-control techniques for the Cache Sketch.
Cached initialization builds on the insight, that initially ∆ = 0 for a Cache Sketch pig-
gybacked upon connection. This implies, that every cached record can be used without
degrading consistency, i.e. loading the Cache Sketch is equivalent to loading all initially
required records in bulk, which may also include all static resources (images, scripts, etc.)
of the application or website.
∆-Bounded staleness guarantees ∆-atomicity by not letting the age of the Cache Sketch
exceed ∆. Updates may be performed eagerly or lazily. With eager updates, the client
updates cct in intervals of ∆. As this may incur updates despite the absence of an actual
workload, lazy updates only fetch a new Cache Sketch on demand. To this end, if a read
request is issued at tnow > t + ∆, the request is turned into a revalidation instructing the
service to append the Cache Sketch to the result. Hence, at the mild cost of a cache miss
every ∆ time units, cct is updated without additional requests.
Similar to cached initialization, a conflict-avoidant optimistic transaction (COT) is started
by loading the Cache Sketch. The caching model is only compatible with optimistic trans-
actions as reads are performed in caches which cannot participate in a lock-based concur-
rency control scheme. By having clients collect the read-sets of their transactions con-
sisting of record ids and version numbers, the database service can realize the transaction

1Bailis et al. [BVF+12] have extensively studied the staleness of Dynamo-style systems. They found, that
with high probability ∆db is very low and for many configurations not perceivable at all.

2We are not aware of any scientific studies on CDN purge latencies. Anecdotally, the Fastly CDN used in
our evaluations employs the bimodal multicast protocol for invalidations with measured latencies typically much
lower than 200ms: fastly.com/blog/building-fast-and-reliable-purging-system

validation using BOCC+, as shown in [GBR14]. The important alteration that COTs bring
to this scheme is that cached reads can drastically reduce the duration T of the transaction,
while the Cache Sketch limits staleness to T . Since the abort probability of optimistic
transactions has been shown to grow exponentially with T [Tho98], lowering T through
cache hits can greatly reduce abort rates3.

Client
Expiration-

based Cache
Invalidation-
based Cache Server

Client Cache
Sketch

Server Cache
Sketch

b={x2}
t = {(x2, t2),(x1, t1)}

b=

b={x2}

CONNECT

bt0={x2}

INITIALIZE

READ x3

QUERY

x2

RESPONSE

inv=true

c={(x2,t2),(x3,t3)} c={(x1,t1)}

REVALIDATE

x2
c={(x3,t3)}

RESPONSE

x2,t4
c={(x2,t4),(x3,t3)} c={(x1,t1),(x2,t4)}

REPORT READ

x2,t4

WRITE x1
PUT

x1=v

b={x2}
t = {(x2, t4),(x1, t1)}

REPORT WRITE

x1 b={x2,x1}
t = {(x2, t4),(x1, t1)}

RESPONSE

ok

INVALIDATE

x1

RESPONSE

true

READ x2

QUERY

x3

RESPONSE

false
GET

x3

RESPONSE

x3

Figure 3: An end-to-end example of the proposed Cache Sketch methodology.

Figure 3 shows an end-to-end example of Cache Sketch usage. First, the client fetches
the Cache Sketch. As x3 is not contained in it, the record is fresh and hence requested
normally, resulting in a cache hit. The next record x2 is contained and hence a reval-
idation is sent, causing the expiration-based cache to evict its cached copy. The server
returns x2 with a new TTL/expiration date t4, which is saved in both caches. Addition-
ally, the new expiration date is also reported to the server Cache Sketch, where expiration
state is tracked. On the subsequent write on x1, the server Cache Sketch adds x1 to the
Bloom filter, since its expiration date t1 has not yet passed. This also tells the server,
that invalidation-based caches need to be purged. Any later readers are therefore able to
revalidate x1 from an invalidation-based cache.

3We skip many details here. An extensive quantitative investigation is an important part of our future work.

2.2 The Server Cache Sketch

The purpose of the server Cache Sketch cst is the efficient and correct generation of client
Cache Sketch defined in Theorem 1. This requires two important capabilities the client
Cache Sketch lacks. First, the server Cache Sketch must support removal of keys in order
to evict expired items. Second, it must support invalidation queries which report, whether
a write has to be propagated as an invalidation.

Definition 2. The server Cache Sketch cst consists of a Counting Bloom filter cbt con-
taining all elements of cct and a mapping of keys to their maximum expiration date e =
{(ki, ti)|maxti=tr+TTL(r(x, tr, TTL) ∧ ti > tnow)}. When x is updated or deleted, kx
is added to cbt iff kx ∈ e. Similarly, an invalidation is only necessary, if kx ∈ e.

The employed Counting Bloom filter [BMM02] is an extension of the Bloom filter that
allows removals and can be implemented to materialize the corresponding normal Bloom
filter, so retrievals of cct do not require any computation. To make the retrieval of the Cache
Sketch efficient, the sizem of the Bloom filter must be chosen carefully. The false positive
rate p is determined by the size m of the bit vector, the number of inserted elements n and
the number of hash functions k: p ≈ (1 − exp(−kn/m))k. The optimal number of hash
functions is k = dln(2) · (n/m)e, giving the size as m = −n · ln(p)/ln(2)2.

A simple model is to choose m so that transferring cct only requires a single round-trip,
even at connection startup. This is achieved, if the message size of m bits (and some
HTTP metadata) measured in TCP segments of 1,460 bytes does no exceed the initial TCP
congestion window size 10, i.e. m ≈ 10 · 1460 byte = 116800 bit. For a false positive
rate p ≤ 0.05, the filter could hence contain up to n ≈ 18732 distinct records. If n
increased to 50000, p would grow logarithmically to p = 0.326. If the Bloom filter is only
transferred over an already established connection (e.g., after loading an HTML page), it
can be significantly larger without incurring an additional round-trip4.

The server Cache Sketch represents shared state between all server nodes. It lies in the
critical request path as read, update and delete operations require modifying it. Previously,
we assumed a single cst of every tenant’s database. As a generalization, cst can be parti-
tioned and replicated based on tables (resp. buckets, collections, classes) by maintaining
a separate cst for each table. This solves two problems. First, updates to the Cache Sketch
scale horizontally, mitigating potential write bottlenecks. Second, if an aggregate Cache
Sketch for all tables is too large, clients can opt to fetch the Cache Sketch only for the
required tables. To expose the aggregate Cache Sketch, the database service assembles the
Cache Sketch by performing a union over the respective Bloom filters, which is a simple
bitwise OR over their respective bit vectors [BMM02].

To extend the Cache Sketch approach from cached records to cached query results, each
cacheable query q has to be identified by a key kq (e.g., a concatenation of the query and its
parameters), so it can be tracked in cst . The database service then evaluates for each record
update, whether a matching query q exists and treats it like an update to q itself5. An

4This is an effect of the TCP slow-start algorithm which continuously increases the congestion window.
5From an implementation perspective, this could for instance be achieved through distributed real-time pro-

cessing frameworks (e.g., Storm, S4, Samza) or well-known techniques for materialized view maintenance.

alternative approach to query caching is to represent query results as lists of record keys,
which can then individually profit from caching. The trade-off between both approaches
are lower latency of cached results opposed to higher overall hit rates and reuse between
queries. Combining both approaches in a single method is part of our future work.

2.3 Quantifying (∆, p)-Atomicity for the Web Caching Model

For consistent databases, the Cache Sketch guarantees (∆+∆c)-atomicity, where ∆c is the
upper bound for the staleness of records read from invalidation-based caches. ∆c largely
overestimates staleness, since access is often local to geographic regions and seldomly
governed by worst-case delays. We therefore refine ∆c to (∆c, p)-atomicity6, which a read
satisfies if it is ∆c-atomic with probability p [BVF+12]. The probability p for (∆c, p)-
atomic semantics can be expressed through the round-trip latencies Tcc (client-cache), Tsc
(server-cache) and Ti (invalidation). A revalidation or cache miss hitting an invalidation-
based cache is ∆c-atomic, if the time for the corresponding write acknowledgement to
travel back to the sender plus the time for the read to reach the cache subtracted from the
invalidation latency is smaller than ∆c:

p = Pr[Ti − (Tsc/2 + Tcc/2 + Tcc/2) ≤ ∆c] (1)

We gathered real-world latency traces to quantify (∆c, p)-atomicity and to feed our later
simulations with realistic assumptions. The setup consists of a client located in the Ama-
zon EC2 California region, a server in EC2 Ireland and the Fastly CDN as an example of an
invalidation-based web caching system. We derived maximum-likelihood distribution fits
for Tcc and Tsc for different continuous distribution families as shown in Figure 4b and 4d,
after applying the Tukey-outlier criterion to account for measurement noise, such as the
the noisy-neighbor problem. Though there is consensus in the networking literature that
in the general case, network delays cannot be modeled using a single distribution [VM06],
the normal and Gamma distribution yield good fits for the described setup (goodness-of-fit
p-values 0.21 and 0.68 with the Cramér-von Mises test). This is illustrated in the QQ-plot
in Figure 4c, which shows that apart from the tails of the raw data (with outliers), the
normal distribution describes Tcc very accurately.

Based on this data, (∆c, p)-atomicity can be computed as shown in Figure 4a with Tcc/2 ∼
N(2.00, 0.06) and Tsc/2 ∼ N(86.54, 0.06) for two Ti distributions. For Ti ∼ N(80, 10),
which we found to be a good upper bound in our experiments, the probability of reading a
fresh value starts high and quickly converges to 1. For caches located nearer to the server,
p would converge even faster. In conclusion, with asynchronous invalidations exhibiting
(∆c, p)-atomicity, the Cache Sketch guarantees (∆+∆c, p)-atomicity. This allows precise
reasoning about the consistency trade-off for a given scenario of latency distributions and
eases the decision on whether invalidations should be allowed to be asynchronous.

6(∆, p)-atomicity is also referred to as t-Visibility.

Purge N(80,10)

Purge N(160,30)

t-Visibility N(80,10)

t-Visibility N(160,30)

Client-CDN

CDN-Server

-100 0 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

milliseconds

C
D
F

(a) (∆c, p)-atomicity in the web caching model.

3.6 3.8 4.0 4.2 4.4
Latency [ms]

1

2

3

4

PDF

(b) Distribution of client-cache latency Tcc.

3.6 3.8 4.0 4.2 4.4

3.8

4.0

4.2

4.4

Theoretical Quantiles of Fitted Normal Distribution

E
m
pi
ric
al
Q
ua
nt
ile
s

(c) QQ-Plot for the normal fit of Tcc.

Normal

Log-Normal

Gamma

Fisher-Tippet

Weibull

Cauchy

Student T

172.6 173.0 173.2 173.4
Latency [ms]

1

2

3

4

PDF

(d) Distribution of server-cache latency Tsc

Figure 4: Analysis of exemplary latencies and their effect on (∆c, p)-atomicity.

3 Optimal Cache Expiration

The TTL for which caches are allowed to store records significantly affects cache hits,
stale reads, invalidations and false positives in the Cache Sketch. For instance, records that
experience a write-only workload but are cached with large TTLs would hurt performance,
as each write would entail an unnecessary invalidation. Likewise, read-heavy records
would suffer from small cache hit ratios, if assigned TTLs are too small. The usefulness of
the Cache Sketch depends on its false positive rate. Therefore, we introduce the concept
of TTL estimators which try to minimize costs.

Definition 3. A TTL estimator E(id, λidm, λ
id
w) → TTLid maps a record’s historic cache

miss rate λidm and write rate λidw to a TTL that minimizes the cost function:

cost = w1 ·
#cachemisses

#ops
+ w2 ·

#invalidations

#ops
+ w3 ·

#stalereads

#ops
+ w4 · p

The cost function is parameterized by weights wi that express the relative severity of each
condition. For example, in a setup with a slow single server, many invalidation-based

caches and an application with low consistency requirements, w1 and w2 would be large
to protect the server, while w3 and w4 would be smaller.

The estimator is invoked for every cache miss to decide on the next TTL. As a baseline, we
propose the Static Estimator Estatic(id) = TTLmax that always minimizes cache miss
costs through a high static TTL. The trade-off is, that every write on record x happening
t seconds before the expiration causes an invalidation, opens the possibility of a stale
read caused by the asynchronous invalidation and forces the cache sketch to contain x
for the remaining t seconds, increasing its false positive rate. This implies, that the static
estimator should only be employed if the Cache Sketch is large enough to hold all records
that might be updated in a time window of TTLmax. A straight-forward improvement
is thus obvious: instead of always estimating very large TTLs, TTLs should rather be
correlated to the expected time to the next on a record. Furthermore, TTLs should also be
lower if the workload is write-dominant and higher if it is read-dominant.

To make the improved TTL estimation feasible, some assumptions have to be made.
First, we assume, that the per-record workloads are readily available to estimators in
the form of cache-miss rates λidm and write rates λidw . Second, to estimate the proba-
bility of writes in certain time intervals, a continuous-time stochastic process of writes
{W (t), t ∈ T} is assumed where the random variables X(t) model the amount of writes
seen until time t. Intuitively, given that exactly one write happened in the interval [0, t],
the time of occurence should be uniformly distributed over [0, t]. This requirement is met
by the Poisson process, which is the most commonly used stochastic process for model-
ing arrival processes. It is characterized by increments that follow a Poisson distribution
Pr[W (t + s) −W (s) = k] = (λwt)

k/k!e−λwt, where λw is the write rate, i.e. the ex-
pected amount of writes in a time interval of length t is E[W (t)] = λwt. A very central
property for our TTL estimation problem is, that inter-arrival times between writes Tw are
exponentially distributed with mean 1/λw, i.e. Pr[Tw < TTL] = 1 − e−λwTTL. This
implies, that knowing an record’s write rate is sufficient information to derive the expected
time of the next write E[Tw] = 1/λw and the quantiles Q(p, λw) = −ln(1 − p)/λw. As
the stochastic process of reads is unobservable (hidden through caches), we specifically do
neither require knowledge about the workload mix, i.e. record-specific read-write ratios
nor the popularity distribution, i.e. the underlying distribution of record access frequen-
cies. Instead, the TTL estimator implicitly adapts to these conditions.

3.1 Constrained Adaptive TTL Estimation

The goal of the constrained adaptive TTL Estimator (CATE) is to minimize the cost func-
tion, while constraining the size of the Cache Sketch to meet a good false positive rate. To
this end, CATE adapts TTLs to the cache miss rate λr and write rate λw instead of merely
estimating the time to the next write. The estimation approach is illustrated in Figure 5a:
write and cache miss metrics are aggregated in the server and fed into the estimator for
each cache miss to retrieve a new TTL. The algorithm is based on four design choices:

1. Read-only records yield TTLmax and write-only records are not cached.

2. If the miss rate λm equals the write rate λw, the record should be cached for its
expected lifetime expressed by the interarrival time median of writes Q(0.5, λw),
i.e. the TTL is chosen so that the probability of a write before expiration is 50%.

3. A ratio function f : R → [0, 1] expresses, how the miss-write ratio impacts the
estimated TTLs. It maps the imbalance between misses and writes to ptarget which
gives the TTL as the quantileQ(ptarget, λw). If for instance misses dominate writes,
p = 0.9 would allow a 90% chance of a write before expiration, in order to increase
cache hits. Using quantiles over TTLs for the ratio function has two advantages.
First, the probability of a write happening before the expiration is easier to interpret
than an abstract TTL. Second, the quantile scales with the write rate. The ratio
function and its parameters can be tuned to reflect the weights in the cost function.

4. Constraints on the false positive rate of the Cache Sketch and the number of invali-
dations per time period are satisfied by lowering TTLs.

Algorithm 1 Constrained Adaptive TTL Estimation (CATE)
1: procedure ESTIMATE(λm : miss rate, λw : write rate)→ TTL

2: constants: TTLmax, slope, f : ratio function
3: if λw = NIL then return TTLmax

4: imbalance =

λm/λw − 1 if λm ≥ λw
−(λr/λw − 1) else

5: pmax ← Pr[Tw < TTLmax] = (1− e−λwTTLmax)

6: if f is linear then ptarget ← 0.5 + slope · imbalance
7: else if f is logistic then ptarget ← pmax/(2pmax · e−slope·imbalance)
8: else if f is unweighted then ptarget ← λm/(λm + λw)

9: if Cache Sketch capacity exceeded then
10: Decrease ptarget by a penalty proportional to false positive rate

11: if Invalidation budget exceeded then
12: Decrease ptarget

13: TTL =

0 if ptarget ≤ 0

TTLmax if ptarget ≥ pmax
Q(ptarget, λw) else

14: return TTL

Algorithm 1 describes CATE. The ESTIMATE procedure is invoked for each cache miss. It
requires three constants: the maximum TTL TTLmax, the ratio function f and the slope
which defines how strongly f translates the imbalance between misses and writes into
smaller or greater TTLs. First, the miss-write imbalance is calculated. We define it to be
0 if λm = λw, x if λm is x times greater than λw and−x if λw is x times greater than λm.
Next, the ratio function maps imbalance to the allowed probability ptarget of a write (and
invalidation) before the expiration date. ptarget is capped at pmax = Pr[Tw < TTLmax],

Client

Server

Reads

Misses

λm: Miss Rate
λw: Write Rateco

lle
ct TTL

per record
λm λw

Caches

 Writes
~ Poisson

TTL Estimator

Objective:
-maximize Cache Hits
-minimize Purges
-minimize Stale Reads
-bound Cache Sketch
 false positive rate

 Writes
~ Poisson

(a) The TTL estimation process.

0

M
ed
ia
n

U
nw
.

Li
ne
ar

Lo
gi
st
ic

60

TTL [s]0.0

0.2

0.4

0.6

0.8

Write CDF
E[TM]=19000, E[TW]=30000

(b) TTL estimations for an example workload.

Linear (slope=0.5) Logistic (slope=1)

Unweighted

1:3 1:2 1:1 2:1 3:1 4:1 5:1 6:1
0.0

0.2

0.4

0.6

0.8

1.0

Miss:Write Ratio

In
va
lid
at
io
n
P
ro
ba
bi
lit
y

(c) Ratio functions.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

miss rate [ops/time unit]

w
rit
e
ra
te

[o
ps

/ti
m
e
un
it]

0.1 0.3 0.5 0.7 0.9

Maximum
TTL

No
Caching

(d) ptarget contour plot for linear ratio function.

Figure 5: Constrained Adaptive TTL Estimation.

so that the estimated TTL never gets larger than TTLmax. We consider three types of ratio
functions shown in Figure 5c: a linear and a logistic function of the imbalance, as well as
the unweighted fraction of misses in all operations.

In order not to overfill the Cache Sketch, its current false positive rate is considered. If
it exceeds a defined threshold, ptarget is decreased to trade invalidations on non-expired
records against revalidations on expired records. By lowering the probability of writes on
non-expired records, Cache Sketch additions decrease, too. Invalidations are treated sim-
ilarly: if the budget of allowed invalidations is exceeded, ptarget is decreased. This way,
Cache Sketch additions and invalidations are effectively rate-limited. Optimal decrements
depend on the severity a of a violation and can be computed as ptarget = ptarget∗(1−f)a,
where f is the degree of violation, for example the difference between the allowed and ac-
tual false positive rate. Last, the TTL derived as the quantile Q(p, λw) is returned.

Figure 5b gives an example of estimated TTLs for a read-heavy scenario, as well as the
corresponding probability Pr[Tw < TTL] of a write before expiration. By construction,

all three ratio functions yield a TTL that is higher than the median time between two writes
in order to drive cache misses down. The magnitude of this TTL correction is determined
by the ratio function and its slope. This makes it obvious, that minimizing the cost func-
tion requires tuning of the ratio function in order to meet the relative weights between
misses, invalidations, stale reads and false positives. As finding the right TTLmax and
slope in running system is a cumbersome, manual and error-prone process, we introduce
a framework in Section 4 that chooses parameters using Monte-Carlo simulations to find
the best solution under a given workload and error function. Figure 5d shows the effect of
different miss- and write rates as a contour plot of the linear ratio function. In the upper
left area, writes clearly dominate misses, so the estimator opts to not cache the record at
all - frequent invalidations would clearly outweigh seldom cache hits. In the bottom right
area on the other hand, misses dominate writes, so the record is cached for TTLmax. The
area in between gradually shifts to higher TTLs (values of ptarget), with the steepness of
the ascent varying with the slope.

As explained above, estimating TTLs requires each database service node to have approx-
imations of write and miss access rates for each record. To this end, inter-arrival times
are monitored and averaged over a time window using a simple moving average (SMA) or
exponentially-weighted moving average (EWMA). The space requirements of the SMA
are high, as potentially many arrival times for each record have to be tracked, whereas the
EWMA only requires a single value. If the space requirements are still too high, sampling
is applied. More specifically, exponentially-biased reservoir sampling is an appropriate
stream sampling method that prefers newly streamed values over older ones. The reser-
voir is a fixed-size stream sample, i.e. in this case a map of record ids to their write and
miss moving averages. In the approach of load-balanced middleware service nodes, ev-
ery server already sees an unbiased sample of operations, whereas in the case that Cache
Sketch maintenance is co-located with each partitioned database node, only local records
have to be tracked, mitigating the space requirements.

4 Evaluation

We have implemented a Yahoo! Cloud Serving Benchmark (YCSB) wrapper for Monte-
Carlo simulation (YMCA) for arbitrary caching architectures, which runs completely in
memory. YCSB [CST+10] is a widely-adopted standard benchmark for CRUD data stores.
As shown in Figure 7, YMCA consists of a client that implements the YCSB interface
for basic CRUD operations, an arbitrary number of cache layers and additional modules
for collecting metrics, in particular stale reads, cache misses and invalidations. Cache
layers are stacked onto each other and can model any caching topology (e.g., a CDN
or a reverse proxy). Latencies between layers are drawn from pluggable distributions,
assuming symmetric latencies.

Overall, YMCA provides a toolbox to analyze caching behavior of multi-layered database
infrastructures. The YMCA client tracks and reports stale reads. A read is considered
stale, if there was an acknowledged write with a version that is newer than the version the
client read and the timestamp from the begin of the read is newer than the write (i.e., the

Pluggable simulated caches,

choosable topology

YCSB
workload

YMCA
Client

Stale Read
Detector

Cache Miss
Detector

Expiration-
based
Cache

Invalidation-
based
Cache

Database
Server

Pluggable latency distributions

purge

CRUD

CRUDCRUDCRUD

Figure 6: Concept of the extensible YMCA.

read started after the write was acknowledged to the client). Apart from stale reads and
invalidations, YMCA also keeps track of cache hits and misses reported by each cache.
In order to simulate long durations, YMCA implements a time scaling mechanism: all
latencies and TTL estimations can be scaled by a defined factor. In the following, we
assume the setting from Section 2.3 that includes an infrastructure consisting of a client, a
CDN and the database service. The database service employs the server Cache Sketch to
decide, if an update requires an invalidation and passes cache misses to the TTL estimator
to assign the record-specific TTL.

4.1 Parameter Optimization for the TTL Estimators

As discussed above, adaptive TTL estimation depends on the slope of the ratio function,
as well as TTLmax. In order to optimize these parameters, we use a variation of max-
imum descent hill climbing. Initial slopes of the ratio function are drawn uniformly at
random in the [0, 1] range. The algorithm then tests if increasing or decreasing the slope
provides an improvement of the simplified cost function (w ·#cachemisses+ (1− w) ·
#invalidations)/#ops that is to be minimized. Since the number of invalidations is an
approximate indicator of stale reads as well as a measure of the Bloom filter population,
we have found the simplified cost function to be a well-working simplification of the orig-
inal cost function. Depending on the cost of cache misses compared to invalidations (and
the subsumed false positive and stale read rate), terms are weighted with w ∈ [0, 1].

Testing directions of TTLmax and slope constitutes a super-step, which concludes by
persisting the maximum direction of change (towards a lower cost) for the next super-step
to start with. The algorithm terminates after maximum number of super-steps (50) or when
it cannot improve costs. Optimizations were performed for YCSB workloads A (write-
heavy; read/write balance 50%/50%) and B (read-heavy; read/write balance 95%/5%) with
a Zipfian popularity distribution. Each simulation step was run on 100,000 operations for
10 threads, with a targeted throughput of 200 and a time scaling factor of 50, on the
default amount of 1000 records. We ran the hill climbing algorithm from 25 starting
points. Figure 7a and 7c show the resulting costs as a function of w for the optimized
parameters of CATE, with a linear ration function compared to the static TTL estimation

●
●

●
●

●
●

■

■

■

■
■

■

0.1 0.2 0.3 0.4 0.5
w

0.1

0.2

0.3

0.4

0.5

cost

● Static ■ CATE (linear)

(a) Costs for Workload A.

0/0 0/20 20/0 20/20 40/40 66/20 80/80
hit ratios

500

1000

1500

2000

2500

load time

p = 5% p = 30%

(b) Page load time improvement through the
cached initialization model.

● ● ● ● ● ●

■

■ ■ ■ ■ ■

0.1 0.2 0.3 0.4 0.5
w

0.01

0.02

0.03

0.04

0.05

cost

● Static ■ CATE (linear)

(c) Costs for Workload B.

●

●

●

●

●
● ● ● ● ●

■
■

■

■

■

■
■ ■

■ ■

100k 200k 300k 400k 500k
operations

0.2

0.4

0.6

0.8

1.0

p

● Static ■ CATE (linear)

(d) False positive rate for a n=1k, p=0.05 Cache
Sketch under Zipf-distributed operations.

Figure 7: YMCA simulation results.

with a high TTLmax. The results demonstrate, that CATE performs significantly better
than static estimation for applications that do prefer high cache hit rates (workload A).
Unsurprisingly, read-heavy workloads leading to many cache hits perform slightly better
with a static (maximum) TTL estimation (unless cache misses are weighted very low).

As page load time is arguably the most important web performance metric, we analyzed
the gains of cached initialization for different browser cache/CDN cache hit rates and two
Cache Sketch false positive rates, assuming an average web page with 90 resources using
6 connections [GBR14] and that the Cache Sketch is used for every resource. The results
shown in Figure 7b are as drastic as expected: for instance, for the 66%/20% cache hit
rate described for Facebook photos [HBvR+13], the speedup is over 320% for p = 0.05.
The development of the Cache Sketch false positive rate is shown in Figure 7d for 100k
records, workload B, a slope optimized for 100k operations and the Bloom filter configured
to contain 1k elements with p = 0.05. As expected, CATE achieves lower false positive
rates by decreasing TTLs, when p grows too large. Even though the Cache Sketch is
provisioned to only hold 1/100 of all records, the static estimator performs surprisingly
well, as long as the number of operations is smaller than the number of total records.

●
●

●

●

●

●

■ ■ ■
■

■

■

◆◆
◆

◆

◆

◆

▲▲ ▲
▲

▲

▲

200 400 600 800 1000
threads

2000

4000

6000

8000

10000

12000

operations/s

● Orestes (B) ■ MongoDB (B)

◆ Orestes (A) ▲ MongoDB (A)

(a) Throughput for a single client.

●● ● ● ● ●

■ ■
■

■

■

■

200 400 600 800 1000
threads

0.6

0.7

0.8

0.9

cache hit ratio

● Workload B ■ Workload A

(b) Cache hit ratios.

●
● ● ● ●

●

■ ■ ■ ■ ■
■

◆◆ ◆ ◆ ◆
◆

▲ ▲ ▲ ▲ ▲ ▲

200 400 600 800 1000
threads

50

100

150

ms

● Orestes (B) ■ MongoDB (B)

◆ Orestes (A) ▲ MongoDB (A)

(c) Latencies of read operations.

●

● ●

● ●
●

■

■

■

■
■

■

200 400 600 800 1000
threads

0.001
0.002
0.003
0.004
0.005
0.006
0.007

stale read ratio

● Workload B ■ Workload A

(d) Stale read ratios.

Figure 8: Performance and consistency metrics for YCSB with CDN-caching.

4.2 YCSB Results for CDN-Cached Database Workloads

To validate the results in a real-world setup, we conducted the YCSB benchmark for the
described setup on Amazon EC2, using c3.8xlarge instances for the client (northern Cal-
ifornia region) and server (Ireland), while caching in the Fastly CDN. We took the docu-
ment store MongoDB as a baseline and compared it to an ORESTES server running on the
MongoDB machine to add the Cache Sketch and the REST API. The benchmark was per-
formed with the same configuration as the simulation, but using the static TTL estimator.
Figure 8 shows latency, throughput, cache hit ratios and stale reads for 32 to 1024 threads
(i.e. YCSB clients). The results reveal the expected behavior: latency and throughput are
considerably improved in both workloads, although a slight non-linearity between 512 and
1024 threads occurs, caused by thread scheduling overhead of the limited single-machine
design of YCSB. MongoDB achieves the same latency and throughput in both workloads,
since all operations are bound by network latency. The very few stale reads show consider-
able variance and were largely independent from the number of threads, as seen in Figure
8d, supporting our argument that (∆c, p)-atomicity is an appropriate consistency measure
and CDNs well-suited to answer Cache Sketch-triggered revalidations.

4.3 Efficient Bloom filter maintenance

The server Cache Sketch requires an efficient underlying Counting Bloom filter. For this
purpose, we developed a Bloom filter framework available as an already widely-used
open-source project7. It supports normal and Counting Bloom filters as in-memory data
structures as well as shared filters backed by the in-memory key-value store Redis. The
library supports the table-based sharding and replication introduced in Section 3 for high-
throughput workloads. The Redis Bloom filter uses the capabilities of Redis to maintain
an efficient bit vector for the materialized Bloom filter and relies on pipelining and batch
transactions to ensure performance and consistency. The choice of Redis is motivated by
its tunable persistence complemented with very low latency.

0.0 0.2 0.4 0.6 0.8 1.0

MD2
Murmur3
CRC32

FNVWithLCG
Murmur2

RNG
CarterWegman
Murmur3KM

SHA512
SHA1

SHA384
SHA256

MD5
Adler32

p-Value

hashes = 100000, m = 1000, k = 10

(a) Quality of Bloom filter hashes for random
words (Box-Whisker plot of p-values).

●

●

●

●
●

● ●

■

■ ■ ■ ■ ■ ■

◆

◆
◆ ◆ ◆ ◆ ◆

▲

▲

▲

▲ ▲ ▲ ▲

▼

▼ ▼ ▼ ▼ ▼ ▼○

○

○
○

○ ○ ○

1 2 4 8 16 32 64
conn.

50000

100000

150000

200000

250000

operations/s

● contains

■ add

◆ remove

▲ pull

▼ add (BF)

○ contains (BF)

(b) Throughput of the Redis-backed Counting
Bloom filter and Bloom Filter (BF).

Figure 9: Analysis of the Redis-backed Bloom filters.

Figure 9 shows selected performance characteristics of the Redis Bloom filters. The uni-
formity of implemented hash functions for random Strings is evaluated in Figure 9a using
the p-values for 100 χ2-goodness-of-fit tests. For random inputs (e.g., UUID record keys)
all hash functions perform reasonably well - including simple checksums. However, for
keys exhibiting structure, the best trade-off between speed of computation and unifor-
mity is reached by Murmur 3. Figure 9b plots the throughput of the unpartitioned, non-
replicated Redis Bloom filters for a growing amount of connections withm = 100000 and
k = 5 on an Intel quad-core server with 16GB RAM. Read operations (querying, pulling
the complete filter) achieve roughly 250k ops/s, while write operations (adding, removing)
that require some overhead for counter maintenance and concurrency still achieve over 50k
ops/s resp. 100k ops/s. This illustrates, that even a single-server Redis Cache Sketch is not
likely to become a bottleneck in a database service.

7Available at https://github.com/Baqend/Orestes-Bloomfilter along with much more detailed results.

5 Related Work

Expiration-based web caching of static content has been researched from many perspec-
tives. Huang et al. give an up-to-date analysis of the Facebook photo serving architecture
which includes browsers caches, CDNs, custom edge caches and data store-level caching
[HBvR+13]. The Summary Cache project [FCAB00] is another example for the use of
Bloom filters in caching, where they are employed as metadata digests in cooperative web
caches. Candan et al. [CLL+01] pioneered the idea of exploiting invalidation-based web
caching for databases with the CachePortal system that detects changes of HTML pages
based on underlying SQL queries and triggers corresponding invalidations.

An alternative approach to low latency applications are geo-replicated database systems,
where a wealth of new systems and protocols have recently been proposed, including
PNUTS, Walter, COPS, Megastore, Spanner, F1 and MDCC [KPF+13]. Some of the
earlier approaches like DBCache and DBProxy [APTP03] also relied on caching, however
in the form of dedicated database proxies. Geo-replicated approaches explore different
positions in the consistency vs. performance trade-off-space, but usually require multiple
synchronous wide-area round-trips for a consistency guarantee. Consistency in distributed
and replicated storage systems has been studied in both theory [GLS11] and practice: PBS
[BVF+12] has a similar approach to YMCA, using Monte-Carlo simulation to determine
average staleness of reads in Dynamo-style quorum systems.

Our focus in this paper is different from previous work on web caching and geo-replication,
since we aim to enable the use expiration-based caching for database workloads with tun-
able ∆-atomicity, relying only on readily available infrastructure and client capabilities.

6 Conclusions

In this paper, we addressed the problem of enabling database services to serve data from
the globally-distributed caching infrastructure of the web. The problem is motivated by
the observation, that web performance and user-perceived latency are a key differentiator
for cloud service and application providers. More specifically, we designed the Cache
Sketch, a data structure that allows clients to control their desired degree of consistency in
the form of ∆-atomicity, while being able to read every non-stale record from expiration-
based caches (e.g., browser caches). To this end, the database service maintains the Cache
Sketch as a Bloom filter of potentially stale records, while additionally employing it to
decide, whether an update operation requires purging of invalidation-based caches (e.g.,
CDNs). To minimize the Cache Sketch size, invalidation costs and cache misses, we pro-
posed the concept of TTL Estimators that produce access-dependent expiration dates. To
reason about the resulting performance and consistency, the YCSB Monte-Carlo Caching
Simulator offers a generic framework for analyzing different workloads, caching archi-
tectures and Cache Sketch parameters. The evaluation of CDN-cached workloads and
Counting Bloom filter performance supports our claim, that the Cache Sketch is a feasible
approach for large latency reductions in database services.

Our work leaves a number of questions for future investigation. One important area is the
combination of the Cache Sketch with optimistic transactions, in particular a quantitative
analysis of the abort rate reduction that can be achieved. Another important area is im-
proving the efficiency of the Cache Sketch even further by designing the TTL estimator to
learn optimal decisions online, without previous training in simulations, perhaps through
techniques of time-series analysis and reinforcement learning.

References

[APTP03] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: A dynamic data cache
for Web applications. In Proceedings of the ICDE, pages 821–831, 2003.

[BMM02] A. Broder, M. Mitzenmacher, and A. B. I. M. Mitzenmacher. Network applications of
bloom filters: A survey. In Internet Math., 2002.

[BVF+12] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, and
Ion Stoica. Probabilistically bounded staleness for practical partial quorums. Proceed-
ings of the VLDB Endowment, 5(8):776–787, 2012.

[CLL+01] K. Selçuk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin Hsiung, and Divyakant
Agrawal. Enabling Dynamic Content Caching for Database-driven Web Sites. In
SIGMOD, pages 532–543, New York, NY, USA, 2001. ACM.

[CST+10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In SOCC, pages 143–154, 2010.

[FCAB00] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM TON, 8(3):281–293, 2000.

[FFM04] Michael J. Freedman, Eric Freudenthal, and David Mazieres. Democratizing Content
Publication with Coral. In NSDI, volume 4, pages 18–18, 2004.

[GBR14] Felix Gessert, Florian Bücklers, and Norbert Ritter. ORESTES: a Scalable Database-
as-a-Service Architecture for Low Latency. In CloudDB 2014, 2014.

[GLS11] Wojciech Golab, Xiaozhou Li, and Mehul A. Shah. Analyzing consistency properties
for fun and profit. In ACM PODC, pages 197–206. ACM, 2011.

[Gri13] Ilya Grigorik. High performance browser networking. O’Reilly Media, [S.l.], 2013.

[HBvR+13] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev Kumar, and
Harry C. Li. An analysis of Facebook photo caching. In SOSP, pages 167–181, 2013.

[KPF+13] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete.
MDCC: Multi-data center consistency. In EuroSys, pages 113–126. ACM, 2013.

[PB08] M. Pathan and R. Buyya. A taxonomy of CDNs. Content delivery networks, pages
33–77, 2008.

[Tho98] A. Thomasian. Concurrency control: methods, performance, and analysis. ACM Com-
puting Surveys, 30(1):70–119, 1998.

[VM06] Piet Van Mieghem. Performance analysis of communications networks and systems.
Cambridge University Press, 2006.

