
Tutorial

10.5441/002/edbt.2018.63

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.63


pull-based push-based

Database 

Management

sta�c 
collec�ons

Stream

Processing

unstructured 
streams

Data Stream

Management

structured 
streams

Real-Time 

Databases

evolving 
collec�ons

Figure 1: Di�erent classes of data management systems and the access patterns they support.

2 SYSTEM LANDSCAPE OVERVIEW:
PULL VS. PUSH

We think systems for data management can be classi�ed by the
way they facilitate access to data as illustrated in Figure 1. At
the one extreme, there are traditional databaseswhich repre-
sent snapshots of domain knowledge as the basis of all queries.
At the other extreme, there are general-purpose stream pro-
cessing engines which are designed to generate output from
conceptually unbounded and arbitrarily structured ephemeral
data streams. Real-time databases and data stream management
systems both stand in the middle, but adhere to di�erent seman-
tics: Real-time databases work on evolving collections that are
distinguished from their static counterparts (i.e. from database
collections) through continuous integration of updates over time,
enabling continuous (real-time) queries over database collections.
Data stream management systems, as the name implies, pro-
vide APIs to query data streams, for example by �ltering speci�c
data and computing rolling aggregations and joins over to-be-
speci�ed time windows. In contrast to most general-purpose
stream processors, datastream management systems usually sup-
port pull-based access to some degree, e.g. in the form of common
ad hoc database queries over the set of currently retained records.

2.1 Static Queries vs. Continuous Queries
A pull-based (static) query assembles data from a bounded data
repository and completes by returning data once, whereas a push-
based (continuous) query processes a conceptually unbounded
stream of information to generate incremental output over time.
Given these fundamental di�erences, the design of any data man-
agement system re�ects a bias towards one or the other; for
example, while databases support push-based data access to a
certain degree (e.g. through triggers), they are clearly geared
towards e�ciency for pull-based data retrieval.

2.2 Collections vs. Streams
While a database collection represents the current state of the
application domain, a data stream rather encapsulates recent
change.

A stream-based representation of an application domain pro-
vides a sequential view on events as they occur, but does not
retain them inde�nitely: Data items are available for a certain
time window and are discarded eventually. This view on the data
promotes use cases that require noti�cations, but queries do not
re�ect actions that happened long ago, since the system only
operates on a su�x and not the entirety of event history. In order
to serve historical data, the ephemeral events have to be applied
to a persistent representation of application state.

A database collection re�ects all data ever written and thus
enables queries that take all events into account. Since collection-
based ad hoc queries only generate one single output, though,
traditional databases do not propagate informational updates to
the client.

2.3 Real-Time Queries Over Database
Collections

Given a database’s limitation to mainly pull-based access, re-
active user interfaces are hard to build on top of an ordinary
database. One possibility is to reevaluate a given collection-based
query from time to time which is ine�cient and introduces stale-
ness on the order of the refresh interval. Another approach is to
merge results from collection-based and stream-based queries;
thus, the application is e�ectively burdened with the task of
view maintenance which is complex and error-prone. Real-time
databases aim to close the gap between both paradigms by pro-
viding collection-based semantics for pull-based and push-based
queries alike.

3 IN-DEPTH SURVEY:
REAL-TIME DATABASES

Our real-time database survey will concentrate on the systems
we perceive as the most popular. Due to space limitations, we do

2





4 DIFFERENTIATION FROM OTHER
VERSIONS OF THE TUTORIAL

The survey of stream processing engines and the overview over
real-time databases have already been presented at di�erent oc-
casions, e.g. at BTW 2017 [4]. Some of the use cases that will be
presented have been discussed in our VLDB 2017 industry paper
[2]. However, since two of the authors (Wolfram Wingerath and
Felix Gessert) are just now �nishing their Ph.D. theses on real-
time big data management, the tutorial intended for March 2018
will incorporate signi�cant updates and extensions. In particular,
the scienti�c portion of the talk will be amended by recent de-
velopments in the space of real-time databases. Further, we will
present our experiences in building and using a real-time data-
base in customer-facing applications at the Backend-as-a-Service
company Baqend. Thus, the tutorial will provide a unique combi-
nation of broad scienti�c research and real-world experiences.

5 SCOPE, LENGTH & INTENDED AUDIENCE
The tutorial in the form outlined here is intended for 90 minutes
and will concentrate on push-based systems, namely real-time
databases and stream processing engines. We can also extend
this tuotrial to 180 minutes by including our previous tutorials
on NoSQL database systems [1, 3, 4] and discussing them in
the light of real-time and stream processing requirements. This
tutorial is intended for anybody interested in novel database
technology; there are no prerequisites, even though a certain
technical understanding of databases will be helpful in following
the in-depth discussion.

6 PRESENTER BIOGRAPHIES
Wolfram Wingerath is a Ph.D. student under supervision of
Norbert Ritter teaching and researching at the University of Ham-
burg. He was co-organiser of the BTW 2015 conference and has
held workshop and conference talks on his published work on
several occasions. Wolfram is part of the databases and informa-
tion systems group and his research interests evolve around real-
time databases and related technology such as scalable stream
processing, NoSQL database systems, cloud computing, and Big
Data analytics. His Ph.D. thesis explores a scalable design for
push-based real-time queries on top of pull-based databases.

Felix Gessert is a Ph.D. student at the databases and informa-
tion systems group at the University of Hamburg. His main re-
search �elds are scalable database systems, transactions, and web
technologies for cloud data management. His thesis addresses
caching and transaction processing for low-latency mobile and
web applications. He is also founder and CEO of the startup
Baqend that implements these research results in a cloud-based
backend-as-a-service platform. Since their product is based on a
polyglot, NoSQL-centric storage model, he is very interested in
both the research and practical challenges of leveraging and im-
proving these systems. He is frequently giving talks on di�erent
NoSQL topics.

Erik Witt is a Full Stack developer and perforamance en-
gineer at Baqend where he builds and optimizes scalable web
applications for the cloud. As the highlight of his master’s degree
at the university and in cooperation with Baqend, he developed
a web-caching-based transaction concept for distributed cloud
databases. Erik has talked about his work at numerous confer-
ences and also regularly authors articles on the Baqend company
blog and related media in order to present the intricacies of web
performance to a broader audience.

Ste�en Friedrich is a Ph.D. student working under super-
vision of Norbert Ritter at the University of Hamburg. He has
taken part in several workshops and conferences, both as pre-
senter and as co-organiser (BTW 2015). Being a member of the
databases and information systems group, Ste�en is interested
in large-scale data management and data-intensive computing.
Furthermore, in his Master thesis, he also dealt with data qual-
ity issues, speci�cally with duplicate detection in probabilistic
data. His research project is primarily concerned with bench-
marking of non-functional characteristics (e.g. consistency and
availability) in distributed NoSQL database systems.

Norbert Ritter is a full professor of computer science at the
University of Hamburg, where he heads the databases and in-
formation systems group. He received his Ph.D. from the Uni-
versity of Kaiserslautern in 1997. His research interests include
distributed and federated database systems, transaction process-
ing, caching, cloud data management, information integration,
and autonomous database systems. He has been teaching NoSQL
topics in various courses for several years. Seeing the many open
challenges for NoSQL systems, he and Felix Gessert have been or-
ganizing the annual Scalable Cloud Data Management Workshop
(www.scdm.cloud) to promote research in this area.

REFERENCES
[1] Felix Gessert and Norbert Ritter. 2016. Scalable Data Management:

NoSQL Data Stores in Research and Practice. In 32nd IEEE Interna-
tional Conference on Data Engineering, ICDE 2016.

[2] Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Erik
Witt, Eiko Yoneki, and Norbert Ritter. 2017. Quaestor: Query Web
Caching for Database-as-a-Service Providers. Proceedings of the 43rd
International Conference on Very Large Data Bases (2017), 12.

[3] Felix Gessert, Wolfram Wingerath, Ste�en Friedrich, and Norbert
Ritter. 2016. NoSQL Database Systems: A Survey and Decision
Guidance. Computer Science - Research and Development (2016).

[4] Felix Gessert, WolframWingerath, and Norbert Ritter. 2017. Scalable
Data Management: An In-Depth Tutorial on NoSQL Data Stores. In
Datenbanksysteme für Business, Technologie und Web (BTW 2017) -
Workshopband, 2.-3. März 2017, Stuttgart, Germany.

[5] Lukasz Golab and M. Tamer Zsu. 2010. Data Stream Management.
Morgan & Claypool Publishers.

[6] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton.
2007. Architecture of a Database System. Found. Trends databases 1,
2 (Feb. 2007), 141–259. https://doi.org/10.1561/1900000002

[7] Ryan Paul. 2015. Build a realtime liveblog with RethinkDB and
PubNub. RethinkDB Blog (May 2015). https://rethinkdb.com/blog/
rethinkdb-pubnub/ Access: 2017-05-20.

[8] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. 2005. The
8 Requirements of Real-time Stream Processing. SIGMOD Rec. 34, 4
(Dec. 2005), 42–47. https://doi.org/10.1145/1107499.1107504

[9] Michael Stonebraker and Ugur Cetintemel. 2005. "One Size Fits All":
An Idea Whose Time Has Come and Gone. In Proceedings of the
21st International Conference on Data Engineering (ICDE ’05). IEEE
Computer Society, Washington, DC, USA, 2–11.

[10] Frank van Pu�elen. 2016. Have you met the Realtime Database?
The Firebase Blog (July 2016). https://�rebase.googleblog.com/2016/
07/have-you-met-realtime-database.html Accessed: 2017-05-20.

[11] Wolfram Wingerath. 2017. Real-Time Databases Explained: Why
Meteor, RethinkDB, Parse and Firebase Don’t Scale. Baqend Tech
Blog (2017). https://medium.com/p/822�87d2f87

[12] Wolfram Wingerath, Felix Gessert, Ste�en Friedrich, and Norbert
Ritter. 2016. Real-time stream processing for Big Data. it - Infor-
mation Technology 58, 4 (2016), 186–194. https://doi.org/10.1515/
itit-2016-0002

[13] Alice Yu. 2015. What does it mean to be a real-time database?
— Slava Kim at Devshop SF May 2015. Meteor Blog (June 2015).
Accessed: 2017-05-20.

4


	Real-Time Data Management for Big DataWolfram Wingerath, Felix Gessert, Erik Witt, Steffen Friedrich, Norbert Ritter

