
Real-Time Data Management for Big Data
Extended Abstract

Wolfram Wingerath
University of Hamburg
Hamburg, Germany

wingerath@informatik.
uni-hamburg.de

Felix Gessert
Baqend GmbH

Hamburg, Germany
fg@baqend.com

Erik Witt
Baqend GmbH

Hamburg, Germany
ew@baqend.com

Ste�en Friedrich
University of Hamburg
Hamburg, Germany

friedrich@informatik.uni-hamburg.
de

Norbert Ritter
University of Hamburg
Hamburg, Germany

ritter@informatik.uni-hamburg.de

ABSTRACT
Users have come to expect reactivity from mobile and web ap-
plications, i.e. they assume that changes made by other users
become visible immediately. However, developers are challenged
with building reactive applications on top of traditional pull-
oriented databases, because they are ill-equipped to push new
information to the client. Systems for data stream management
and processing, on the other hand, are natively push-oriented
and thus facilitate reactive behavior, but they do not follow the
same collection-based semantics as traditional databases: Instead
of database collections, stream-oriented systems are based on a
notion of potentially unbounded sequences of data items.
In this tutorial, we survey and categorize the system space be-
tween pull-oriented databases and push-oriented stream man-
agement systems, using their respectively facilitated means of
data retrieval as a reference point. A particular emphasis lies on
the novel system class of real-time databases which combine the
push-based access paradigm of stream-oriented systems with the
collection-based query semantics of traditional databases. We
explore why real-time databases deserve distinction in a separate
system class and dissect their di�erent architectures to highlight
issues, derive open challenges, and discuss avenues for addressing
them.

1 INTRODUCTION
Reactive applications require the underlying data storage to pub-
lish new and updated information as soon as it is created; data
access is push-based. In contrast, traditional database manage-
ment systems [6] have been tailored towards pull-based data
access where information is only made available as a direct re-
sponse to a client request. While triggers and other push-oriented
mechanisms have been added to their initial design, they are out-
performed by several orders of magnitude when held against
natively push-based systems [9]. In consequence, the inadequacy
of traditional database technology for handling rapidly chang-
ing data has been widely accepted as one of the fundamental
challenges in database design [8].

To warrant low-latency updates in quickly evolving domains,
data stream management systems [5] break with the idea of

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

maintaining a persistent data repository. Instead of random ac-
cess queries on static collections, they perform sequential, long-
running queries over data streams. Data stream management
systems generate new output whenever new data becomes avail-
able and are thus natively push-based. However, data is only
available for processing in one single pass, because data streams
are conceptually unbounded sequences of data items and there-
fore infeasible to retain inde�nitely. Consequently, queries over
streams are con�ned to data that arrives after query activation.

Database Management Data Stream Management
pull-based push-based

persistent collection ephemeral stream
ad hoc, random access continuous, sequential

Table 1: A side-by-side comparison of core characteristics
of database and data stream management systems.

Database and data stream management, respectively, follow
fundamentally di�erent semantics regarding the way that data is
processed and accessed as Table 1 summarizes. The concept of
persistent collections conforms to applications that require a
(consistent) view of their domain, for instance to keep track of
warehouse stock or do �nancial accounting. The data stream
model, on the other hand, comes natural for domains that en-
tertain a notion of event sequences or need to reason about the
relationship between events, for example to analyze stock prices
or identify malicious user behavior. However, the access para-
digm – pull-based or push-based – is tied to the data model: Data-
base management systems lack support for continuous queries
over collections, whereas data stream management systems only
provide limited options for persistent data handling.

Acknowledging the gap between traditional databases on the
one side and data stream management and stream processing
systems on the other, a new class of information systems has
emerged that combines collection-based semantics with a push-
based access model. These systems are often referred to as real-
time databases [10, 13], because they keep data at the client
in-sync with current database state “in realtime” [7], i.e. as soon
as possible after change. Like traditional databases, they store
consistent snapshots of domain knowledge. But like stream man-
agement systems, they allow clients to subscribe to long-running
queries that push incremental updates.

Tutorial

 

 

Series ISSN: 2367-2005 524 10.5441/002/edbt.2018.63

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.63


pull-based push-based

Database 

Management

sta�c 
collec�ons

Stream

Processing

unstructured 
streams

Data Stream

Management

structured 
streams

Real-Time 

Databases

evolving 
collec�ons

Figure 1: Di�erent classes of data management systems and the access patterns they support.

2 SYSTEM LANDSCAPE OVERVIEW:
PULL VS. PUSH

We think systems for data management can be classi�ed by the
way they facilitate access to data as illustrated in Figure 1. At
the one extreme, there are traditional databaseswhich repre-
sent snapshots of domain knowledge as the basis of all queries.
At the other extreme, there are general-purpose stream pro-
cessing engines which are designed to generate output from
conceptually unbounded and arbitrarily structured ephemeral
data streams. Real-time databases and data stream management
systems both stand in the middle, but adhere to di�erent seman-
tics: Real-time databases work on evolving collections that are
distinguished from their static counterparts (i.e. from database
collections) through continuous integration of updates over time,
enabling continuous (real-time) queries over database collections.
Data stream management systems, as the name implies, pro-
vide APIs to query data streams, for example by �ltering speci�c
data and computing rolling aggregations and joins over to-be-
speci�ed time windows. In contrast to most general-purpose
stream processors, datastream management systems usually sup-
port pull-based access to some degree, e.g. in the form of common
ad hoc database queries over the set of currently retained records.

2.1 Static Queries vs. Continuous Queries
A pull-based (static) query assembles data from a bounded data
repository and completes by returning data once, whereas a push-
based (continuous) query processes a conceptually unbounded
stream of information to generate incremental output over time.
Given these fundamental di�erences, the design of any data man-
agement system re�ects a bias towards one or the other; for
example, while databases support push-based data access to a
certain degree (e.g. through triggers), they are clearly geared
towards e�ciency for pull-based data retrieval.

2.2 Collections vs. Streams
While a database collection represents the current state of the
application domain, a data stream rather encapsulates recent
change.

A stream-based representation of an application domain pro-
vides a sequential view on events as they occur, but does not
retain them inde�nitely: Data items are available for a certain
time window and are discarded eventually. This view on the data
promotes use cases that require noti�cations, but queries do not
re�ect actions that happened long ago, since the system only
operates on a su�x and not the entirety of event history. In order
to serve historical data, the ephemeral events have to be applied
to a persistent representation of application state.

A database collection re�ects all data ever written and thus
enables queries that take all events into account. Since collection-
based ad hoc queries only generate one single output, though,
traditional databases do not propagate informational updates to
the client.

2.3 Real-Time Queries Over Database
Collections

Given a database’s limitation to mainly pull-based access, re-
active user interfaces are hard to build on top of an ordinary
database. One possibility is to reevaluate a given collection-based
query from time to time which is ine�cient and introduces stale-
ness on the order of the refresh interval. Another approach is to
merge results from collection-based and stream-based queries;
thus, the application is e�ectively burdened with the task of
view maintenance which is complex and error-prone. Real-time
databases aim to close the gap between both paradigms by pro-
viding collection-based semantics for pull-based and push-based
queries alike.

3 IN-DEPTH SURVEY:
REAL-TIME DATABASES

Our real-time database survey will concentrate on the systems
we perceive as the most popular. Due to space limitations, we do

2

525



Meteor RethinkDB Parse Firebase
poll-and-di� oplog tailing

scales with
3 7 7 7 ?write throughput

scales with
7 3 3 3 ?number of queries

composite queries
3 3 3 3 7(AND/OR)

sorted queries 3 3 3 7 �
(single attribute)

limit 3 3 3 7 3

o�set 3 3 7 7 3

aggregations 7 7 7 7 7

joins 7 7 7 7 7
event stream

3 3 3 3 3queries
self-maintaining

3 3 7 7 7queries
Table 2: A direct comparison of the di�erent real-time query implementations covered in the in-depth survey.

not discuss these systems in the extended tutorial abstract and
refer to our written survey for reference [11]. Table 2 sums up the
respective capabilities of each system detailed in our discussion:
Meteor, RethinkDB and Parse provide complex real-time queries,
but present scale-prohibitive bottlenecks in their respective ar-
chitectures. While the technology stack behind Firebase is not
disclosed, it is apparent that Firebase avoids scalability issues by
simply not o�ering complex queries to begin with.

3.1 Open Challenges
In concept, real-time databases extend traditional databases as
they follow the same semantics, but provide an additional mode
of access. In practice, though, there is no established scheme how
to build a practically useful real-time database system. As will be
shown in the tutorial, every push-based real-time query mecha-
nism is de�cient in at least one of the following characteristics:

(1) scalability: Serving real-time queries is a resource-
intensive process which requires continuous monitoring
of all write operations that might possibly a�ect query
results. To sustain more demanding workloads than a sin-
gle machine could handle, real-time databases typically
partition the set of queries across database nodes. As each
node is only responsible for a subset of all queries in this
scheme,most systems can scale with the number of concur-
rent queries. However, we are not aware of any real-time
database that supports partitioning the change stream
as well. Thus, responsibility for individual queries is not
shared among nodes and overall system throughput re-
mains bottlenecked by single-machine capacity: Queries
simply become intractable as soon as one node is not able
to keep up with processing the entire change stream.

(2) expressiveness: The majority of real-time query APIs are
limited in comparison to their ad hoc counterparts. Aggre-
gations are generally not available and sorting queries are

often unsupported or have severe restrictions; for example,
there are implementations that only allow ordering by a
single attribute or o�er a limit , but no o�set clause. The
lack of such basic functionality on the database side ne-
cessitates ine�cient workarounds in the application code,
even for moderately sophisticated data access patterns.

(3) legacy support: Today’s real-time databases have been
designed from scratch or on top of NoSQL datastores [11]
that do not follow standards regarding data model or query
language. They implement custom protocols for pull-based
and push-based data access alike and exhibit interfaces
that are incompatible among di�erent vendors. While the
complete lack of support for legacy interfaces (particularly
SQL) may be acceptable in development of a new applica-
tion, it complicates the adoption of push-based queries in
the context of existing technology stacks.

(4) abstract API: Many real-time query APIs expose speci-
�cities of the underlying implementation and thus o�er
poor data independence. As such, these interfaces re�ect
bottom-up design and force developers to reason about
problems that lie beyond the application domain. For ex-
ample, most real-time databases do not provide interfaces
that can be used without knowledge of system internals.
Instead, they mostly require an understanding of internal
mechanisms or the structure of change events.

During the talk, we will illustrate how the above-mentioned
limitations present themselves in practice. We also identify the
underlying issues in the respective system architectures and dis-
cuss possibilities to avoid them in future designs. In this context,
we will discuss related technology (e.g. distributed stream pro-
cessing engines [12]) and use them as a source of inspiration for
resolving the apparent challenges.

3

526



4 DIFFERENTIATION FROM OTHER
VERSIONS OF THE TUTORIAL

The survey of stream processing engines and the overview over
real-time databases have already been presented at di�erent oc-
casions, e.g. at BTW 2017 [4]. Some of the use cases that will be
presented have been discussed in our VLDB 2017 industry paper
[2]. However, since two of the authors (Wolfram Wingerath and
Felix Gessert) are just now �nishing their Ph.D. theses on real-
time big data management, the tutorial intended for March 2018
will incorporate signi�cant updates and extensions. In particular,
the scienti�c portion of the talk will be amended by recent de-
velopments in the space of real-time databases. Further, we will
present our experiences in building and using a real-time data-
base in customer-facing applications at the Backend-as-a-Service
company Baqend. Thus, the tutorial will provide a unique combi-
nation of broad scienti�c research and real-world experiences.

5 SCOPE, LENGTH & INTENDED AUDIENCE
The tutorial in the form outlined here is intended for 90 minutes
and will concentrate on push-based systems, namely real-time
databases and stream processing engines. We can also extend
this tuotrial to 180 minutes by including our previous tutorials
on NoSQL database systems [1, 3, 4] and discussing them in
the light of real-time and stream processing requirements. This
tutorial is intended for anybody interested in novel database
technology; there are no prerequisites, even though a certain
technical understanding of databases will be helpful in following
the in-depth discussion.

6 PRESENTER BIOGRAPHIES
Wolfram Wingerath is a Ph.D. student under supervision of
Norbert Ritter teaching and researching at the University of Ham-
burg. He was co-organiser of the BTW 2015 conference and has
held workshop and conference talks on his published work on
several occasions. Wolfram is part of the databases and informa-
tion systems group and his research interests evolve around real-
time databases and related technology such as scalable stream
processing, NoSQL database systems, cloud computing, and Big
Data analytics. His Ph.D. thesis explores a scalable design for
push-based real-time queries on top of pull-based databases.

Felix Gessert is a Ph.D. student at the databases and informa-
tion systems group at the University of Hamburg. His main re-
search �elds are scalable database systems, transactions, and web
technologies for cloud data management. His thesis addresses
caching and transaction processing for low-latency mobile and
web applications. He is also founder and CEO of the startup
Baqend that implements these research results in a cloud-based
backend-as-a-service platform. Since their product is based on a
polyglot, NoSQL-centric storage model, he is very interested in
both the research and practical challenges of leveraging and im-
proving these systems. He is frequently giving talks on di�erent
NoSQL topics.

Erik Witt is a Full Stack developer and perforamance en-
gineer at Baqend where he builds and optimizes scalable web
applications for the cloud. As the highlight of his master’s degree
at the university and in cooperation with Baqend, he developed
a web-caching-based transaction concept for distributed cloud
databases. Erik has talked about his work at numerous confer-
ences and also regularly authors articles on the Baqend company
blog and related media in order to present the intricacies of web
performance to a broader audience.

Ste�en Friedrich is a Ph.D. student working under super-
vision of Norbert Ritter at the University of Hamburg. He has
taken part in several workshops and conferences, both as pre-
senter and as co-organiser (BTW 2015). Being a member of the
databases and information systems group, Ste�en is interested
in large-scale data management and data-intensive computing.
Furthermore, in his Master thesis, he also dealt with data qual-
ity issues, speci�cally with duplicate detection in probabilistic
data. His research project is primarily concerned with bench-
marking of non-functional characteristics (e.g. consistency and
availability) in distributed NoSQL database systems.

Norbert Ritter is a full professor of computer science at the
University of Hamburg, where he heads the databases and in-
formation systems group. He received his Ph.D. from the Uni-
versity of Kaiserslautern in 1997. His research interests include
distributed and federated database systems, transaction process-
ing, caching, cloud data management, information integration,
and autonomous database systems. He has been teaching NoSQL
topics in various courses for several years. Seeing the many open
challenges for NoSQL systems, he and Felix Gessert have been or-
ganizing the annual Scalable Cloud Data Management Workshop
(www.scdm.cloud) to promote research in this area.

REFERENCES
[1] Felix Gessert and Norbert Ritter. 2016. Scalable Data Management:

NoSQL Data Stores in Research and Practice. In 32nd IEEE Interna-
tional Conference on Data Engineering, ICDE 2016.

[2] Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Erik
Witt, Eiko Yoneki, and Norbert Ritter. 2017. Quaestor: Query Web
Caching for Database-as-a-Service Providers. Proceedings of the 43rd
International Conference on Very Large Data Bases (2017), 12.

[3] Felix Gessert, Wolfram Wingerath, Ste�en Friedrich, and Norbert
Ritter. 2016. NoSQL Database Systems: A Survey and Decision
Guidance. Computer Science - Research and Development (2016).

[4] Felix Gessert, WolframWingerath, and Norbert Ritter. 2017. Scalable
Data Management: An In-Depth Tutorial on NoSQL Data Stores. In
Datenbanksysteme für Business, Technologie und Web (BTW 2017) -
Workshopband, 2.-3. März 2017, Stuttgart, Germany.

[5] Lukasz Golab and M. Tamer Zsu. 2010. Data Stream Management.
Morgan & Claypool Publishers.

[6] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton.
2007. Architecture of a Database System. Found. Trends databases 1,
2 (Feb. 2007), 141–259. https://doi.org/10.1561/1900000002

[7] Ryan Paul. 2015. Build a realtime liveblog with RethinkDB and
PubNub. RethinkDB Blog (May 2015). https://rethinkdb.com/blog/
rethinkdb-pubnub/ Access: 2017-05-20.

[8] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. 2005. The
8 Requirements of Real-time Stream Processing. SIGMOD Rec. 34, 4
(Dec. 2005), 42–47. https://doi.org/10.1145/1107499.1107504

[9] Michael Stonebraker and Ugur Cetintemel. 2005. "One Size Fits All":
An Idea Whose Time Has Come and Gone. In Proceedings of the
21st International Conference on Data Engineering (ICDE ’05). IEEE
Computer Society, Washington, DC, USA, 2–11.

[10] Frank van Pu�elen. 2016. Have you met the Realtime Database?
The Firebase Blog (July 2016). https://�rebase.googleblog.com/2016/
07/have-you-met-realtime-database.html Accessed: 2017-05-20.

[11] Wolfram Wingerath. 2017. Real-Time Databases Explained: Why
Meteor, RethinkDB, Parse and Firebase Don’t Scale. Baqend Tech
Blog (2017). https://medium.com/p/822�87d2f87

[12] Wolfram Wingerath, Felix Gessert, Ste�en Friedrich, and Norbert
Ritter. 2016. Real-time stream processing for Big Data. it - Infor-
mation Technology 58, 4 (2016), 186–194. https://doi.org/10.1515/
itit-2016-0002

[13] Alice Yu. 2015. What does it mean to be a real-time database?
— Slava Kim at Devshop SF May 2015. Meteor Blog (June 2015).
Accessed: 2017-05-20.

4

527


	Real-Time Data Management for Big DataWolfram Wingerath, Felix Gessert, Erik Witt, Steffen Friedrich, Norbert Ritter

