
Felix Gessert

Service Workers:
The Technology Behind Progressive Web Apps

Frontend

What we are going to cover.

PWAs Service Workers Use Case

 Core Features
 Building Blocks
 Implementation

 Lifecycle
 Network Interception
 Caching Strategies

Service Workers
in Production

at Baqend

Why do(n‘t) we love native apps?

Weak.Great.

On Homescreen
In App Stores
Loading Fast
Work Offline
Use Phone APIs
Receive Push Notifications

Need Installation
Not Cross Platform
Tedious Release and
Update Processes
Maintaining Multiple
Versions

Progressive Web Apps

Combine the best from native and web apps.

What are Progressive
Web Apps?

Progressive Web Apps (PWAs)

Fast Loads
through Caching

Offline Mode
(Synchronization)

Add-to-Homescreen
and Push Notifations

+ +

Try this:

www.baqend.com

Advantages of PWAs

https://developer.mozilla.org/en-
US/docs/Web/Apps/Progressive/Advantages

Discoverable
E.g. in search engines

Installable
Easy access from home screen

Linkable
Link into apps through URLs

Network independant
Offline mode

Progressive
Enhance on capable browsers

Re-engageable
Engage through Web Push

Responsive
Fit any form factor

Safe
HTTPS & recognizable URLs

These apps aren’t packaged and
deployed through stores, they’re

just websites that took all the
right vitamins.

Alex Russell, Google

Building Blocks of PWAs

1. Manifest 2. Service Worker

PWAs are best practices
and open web standards

Progessively enhance
when supported

Implementing PWAs

<link rel="manifest" href="/manifest.json">
{

"short_name": "Codetalks PWA",
"icons": [
{"src": "icon-1x.png", "type": "image/png", "sizes": "48x48"}],

"start_url": "index.html?launcher=true"
}

1. Manifest declares Add-to-Homescreen:

PWAs are best practices
and open web standards

Progessively enhance
when supported

Implementing PWAs

2. Service Workers for caching & offline mode:

PWAs are best practices
and open web standards

Gracefully degrade when
not supported

Cache
SW.js

WebsiteWeb
App

Network

Implementing PWAs

3. Add Web Push and Background Sync:

PWAs are best practices
and open web standards

Progressively enhance the
user experience

Sync
SW.js

WebsiteWeb
App

Network

Push

Typical Architecture: App Shell Model

App Shell: HTML, JS, CSS, images
with app logic & layout

Content: Fetched on
demand & may change
more often

Why PWAs over AMP & Instant Articles?

Independent
Technology

Work across
Devices

No Restrictions
on Development

What is the future and vision
of Progessive Web Apps?

Integrate payment.

Web Payment APIs

• Goal: replace traditional
checkout forms

• Just ~10 LOC to implement
payment

• Vendor- & Browser-
Agnostic

Manage users and logins.

Credentials Management API

1. Click Sign-in → Native
Account Chooser

2. Credentials API stores
information for future use

3. Automatic Sign-in afterwards

Leverage geolocation.

Geofencing

• Notify web app when user
leaves of enters a defined
area

• Requires permission

Build conversational interfaces.

Web Speech API

Native Speech Recognition in the
Browser:

annyang.addCommands({
'Hello Code.talks': () => {

console.log('Hello you.');
}

});

Seemless sharing between apps.

Web Share API

• Share site through native
share sheet UI

• Service Worker can
register as a Share Target

What are Service Workers?

What are Service Workers?

NetworkService WorkerBrowser Tabs

Programmable Network Proxy, running as a separate
Background Process, without any DOM Access.

What do Service Workers do?

NetworkService WorkerBrowser Tabs

• Cache Data (CacheStorage)
• Store Data (IndexedDB)

• Receive Push
• Respond when Offline

What do Service Workers do?

NetworkService WorkerBrowser Tabs

• Intercept HTTP Requests
• Sync Data in Background

• Hide Flaky Connectivity
from the User

Browser Support for Service Workers

Supported by >85% of browsers.

Requires TLS Encryption.

Late, but all in: Microsoft

Publish PWAs to
Microsoft Store

or

https://blogs.windows.com/msedgedev/2018/02/06/welcoming-
progressive-web-apps-edge-windows-10/#tqIAYGJrOUcxvCWg.97

Bing Crawls
PWAs

Convert to
AppX

Microsoft Store

How are Service Workers registered?

<script>
navigator.serviceWorker.register('/sw.js');

</script>

NetworkService WorkerBrowser Tabs

What does the lifecycle look like?

self.addEventListener('install', (event) => {
// Perform install steps

});

self.addEventListener('activate', (event) => {
// Perform activate steps

});

self.addEventListener('fetch', (event) => {
// React to fetch event

});

How to communicate with Service Workers?

// Send message to browser tab
const client = await clients.get('id');
client.postMessage(someJsonData);

self.addEventListener('push', (event) => {
// Receive push notification

});

Fetch,
Message, Push

Post Message

Browser Tab

(Web) Push Service

Push Notification

self.addEventListener('message', (event) => {
// Receive message

});

Intercepting Network Requests

self.addEventListener('fetch', (event) => {
// React to fetch event
const { url } = event.request;
event.respondWith((async () => {
const request = new Request(url.replace('.com', '.de'))
const response = await fetch(request);
const text = await response.text();
const newText = text.replace('Goethe', 'Schiller');
return new Response(newText, { status: 200 });

})());
});

There is so much you can do:

• Rewrite Requests
• Change Responses
• Concat Responses
• Cache Responses
• Serve Cached Data
• …

Service Worker Scope

Request in Scope

Request not in Scope

// Default (and maximum) scope is location of Service Worker
// Gets all requests starting with '/path/'
navigator.serviceWorker.register('/path/sw.js');

Scope determines which requests go to the Service Worker

Service Worker Scope

Request in Scope

Request not in Scope

// Scope option can further limit which requests got to Service Worker
// Gets all requests starting with '/path/subpath/'
navigator.serviceWorker.register('/path/sw.js', { scope: '/path/subpath/' });

Scope can be restricted but not widened

Service Worker Persistence

• Stores Data Persistently
• Stores Structured Data

IndexedDB
an actual database in the browser

• Supports Range Queries
• Browser Support 94%

Service Worker Background Sync

One-off Sync

• executed when user is online
• retried when failed (exponential backoff)

Use Cases
• Save file when online again
• Send email when online again

Experimental

• executed when online, according to
period options

Use Cases
• Load updates to social media time-

line when browser closed

Periodic Sync

Service Worker Debugging

Service Worker Caching

Cache Storage
Stores Request/Response pairs

Cache Storage
• Programmatically managed
• Persistent and non-expiring

• Supports only HTTP
• Only caches GET requests

(no HEAD)

Caching Strategies – Cache Only

Gets all requests from cache or fails.

Caching Strategies – Cache, Network Fallback

Gets requests from cache & uses network as fallback.

Fallback

Caching Strategies – Network Only

Gets requests from network only.

Fallback

Caching Strategies – Network, Cache Fallback

Gets requests from network, the cache acts
as fallback (offline mode).

Fallback

Caching Strategies – Cache, then Network

Gets requests from cache first and from
network in background.

First

Second

Major Challenge: Cache Coherence

OutdatedOutdated

All strategies either serve outdated data or degrade performance

How we use
Service Workers

at Baqend

Problem: slow backends & networks.

2. Network Delays

1. Backend Processing

Solution: Speed Kit
Service Worker rewrites & accelerates slow requests.

1. Fast 2. Less Processing

The magic: dynamic data is kept up-to-date.
Backed by 30 man-years of research.

1 0 11 0 0 10

Learn more.

 7 years of research &
development at the
University of Hamburg

 4 PhDs, >30 student
theses, >25 research
publications

45

https://medium.baqend.com/the-technology-behind-fast-websites-2638196fa60a

How Speed Kit leverages Service Workers.

Website with
Snippet

Speed Kit
Service Worker

Requests

Baqend
Service

Existing
Backend

Fast Requests

ScheduledRealtime

3rd Party
Services

Use case I: optimize images.
SW sends client resolution → responsive image.

Device Speed Kit CDN

Images transcoded to WebP

Rescaled to match Screen Size

JPG and PNG Recompression

JPG 1280x640px
500 KB

WebP 640x320px
100 KB

Width: 640px

VS

BrowserSpeed Kit
CDN

Warm & Fast
HTTP/2 Connection

Browser

Google
Analytics

Facebook
SDK

Amazon
Images

3rd Party Servers

Now Before

48

Use case II: re-route 3rd party dependencies.
Service Workers can manipulate other domains.

1 4 020

purge(url)

hashB(url)hashA(url)

31 1 110
Flat(Counting Bloomfilter)

hashB(url)hashA(url)

SW
Cache

CDN

1

𝑓 ≈ 1 − 𝑒−
𝑘𝑛
𝑚

𝑘

𝑘 = ln 2 ⋅ (
𝑛

𝑚
)

False-Positive

Rate:

Hash-

Functions:

With 20.000 entries and a 5% false positive rate: 11 Kbyte

Consistency: Δ-Atomicity, Read-Your-Writes, Monotonic Reads,

Monotonic Writes, Causal Consistency

Has Time-to-Live
(expiration)

Use case III: handling cache coherence.

Use case IV: simple web push.

Demo:
Looking into Service Workers

Now, we have a
Progressive Web App.

How do we measure
its performance?

A PWA can make a huge difference.

V
C

V
is

u
al

 C
o

m
p

le
te

n
es

s

0

1

0 0.1s 0.2s 0.3s 0.4s 0.5s

න
0

∞

1 − 𝑉𝐶 𝑡 𝑑𝑡

Speed Index
avg. time to visibility

First Meaningful Paint
greatest visible change

Time

Measuring PWA performance.
User-perceived performance.

54

test.speed-kit.com

Test your site.

Wrap Up.

PWAs Service Workers Use Case

Super cool
alternative

to native apps

Powerful
programmable
network proxy

Speed Kit:
Smart CDN though

Service Workers

Learn more about
this topic:

https://blog.baqend.com/

Recommended Books

https://jakearchibald.com/

https://developers.google.com/web/progressive-web-apps/

Guides & Tutorials

https://blog.baqend.com/

Learn more about Services Workers.

Blogs

https://www.igvita.com/

https://developer.mozilla.org/en-US/docs/Web/Apps/Progressive

Felix Gessert · fg@baqend.com · www.baqend.com

14:00 - Kino 7 - Buzzing Technologies

Creating High-Performance Web Apps
with WebAssembly

15:00 - Kino 6 - Architecture

Real-Time Processing Explained: A
Survey of Storm, Samza, Spark & Flink

Catch our other talks!

