
Felix Gessert, Michael Schaarschmidt, Wolfram
Wingerath, Steffen Friedrich, Norbert Ritter

gessert@informatik.uni-hamburg.de

The Cache Sketch: Revisiting

Expiration-based Caching in the Age of
Cloud Data Management

Presentation
is loading

Average: 9,3s

The Latency Problem

Loading…

-1% Revenue

100 ms

The Latency Problem

-1% Revenue

-9% Visitors

400 ms

Average: 9,3s

The Latency Problem

Loading…

-1% Revenue

-9% Visitors

500 ms

-20% Traffic

Average: 9,3s

The Latency Problem

Loading…

-1% Revenue

-9% Visitors

-20% Traffic

1s

-7% Conversions

If perceived speed is such an
import factor

...what causes slow page load times?

State of the art
Two bottlenecks: latency und processing

High Latency

Processing Time

Network Latency
The underlying problem of high page load times

I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

The low-latency vision
Data is served by ubiquitous web-caches

Low Latency

Less Processing

Expiration-based
Every object has a defined
Time-To-Live (TTL)

Revalidations
Allow clients and caches to
check freshness at the server

The web‘s caching model
Staleness as a consequence of scalability

Expiration-based
Every object has a defined
Time-To-Live (TTL)

Revalidations
Allow clients and caches to
check freshness at the server

Stale
Data

The web‘s caching model
Staleness as a consequence of scalability

Expiration-based
Every object has a defined
Time-To-Live (TTL)

Revalidations
Allow clients and caches to
check freshness at the server

Stale
Data

The web‘s caching model
Staleness as a consequence of scalability

Research Question:
Can database services leverage the web
caching infrastructure for low latency with rich
consistency guarantees?

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Expiration-based Caches:

 An object x is considered
fresh for TTLx seconds

 The server assigns TTLs
for each object

Invalidation-based Caches:

 Expose object eviction
operation to the server

Web Caching Concepts
Invalidation- and expiration-based caches

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

at
connect

Periodic
every Δ

seconds

at
transaction

begin

2 31

Invalidations,
Records

Needs Invalidation?

4

Needs Revalidation?

The Cache Sketch approach
Letting the client handle cache coherence

St
al

en
es

s-
M

in
im

iz
at

io
n

In
va

lid
at

io
n-

M
in

im
iz

at
io

n

Client Cache Sketch

10101010 Bloom filter

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record Keys

Report Expirations
and Writes

The End to End Path of Request
The Caching Hierarchy

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy Cache

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

DB.posts.get(id) JavaScript

Updated by
Cache Sketch

Updated by the
server

The End to End Path of Request
The Caching Hierarchy

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy Cache

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

GET /db/posts/{id} HTTP

Updated by
Cache Sketch

Updated by the
server

The End to End Path of Request
The Caching Hierarchy

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy Cache

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Updated by
Cache Sketch

Updated by the
server

Cache-Hit: Return Object
Cache-Miss or Revalidation:
Forward Request

The End to End Path of Request
The Caching Hierarchy

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy Cache

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Updated by
Cache Sketch

Updated by the
server

Return record from
DB with caching TTL

The End to End Path of Request
The Caching Hierarchy

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy Cache

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

Updated by
Cache Sketch

Updated by the
server

Low Latency
Reduced

Database Load
Flash-Crowd
Protection

Higher
Availability

 Let ct be the client Cache Sketch generated at time t, containing
the key keyx of every record x that was written before it expired
in all caches, i.e. every x for which holds:

The Client Cache Sketch

∃ 𝑟(𝑥, 𝑡𝑟 , 𝑇𝑇𝐿), 𝑤 𝑥, 𝑡𝑤 ∶ 𝑡𝑟 + 𝑇𝑇𝐿 > 𝑡 > 𝑡𝑤 > 𝑡𝑟

k hash functions m Bloom filter bits

1 0 0 1 1 0 1 1
h1

hk

...keyfind(key)

Client Cache Sketch

Bits = 1

no

yes

GET request

Revalidation

Cache

Hit

Miss

key

key

1 4 020

purge(obj)

hashB(oid)hashA(oid)

31 1 110
Flat(Counting Bloomfilter)

hashB(oid)hashA(oid)

Browser
Cache

CDN

1

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

Slow initial page loads1

1 4 020

purge(obj)

hashB(oid)hashA(oid)

31 1 110
Flat(Counting Bloomfilter)

hashB(oid)hashA(oid)

Browser
Cache

CDN

1

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

Slow initial page loads1

𝑓 ≈ 1 − 𝑒−
𝑘𝑛
𝑚

𝑘

𝑘 = ln 2 ⋅ (
𝑛

𝑚
)

False-Positive

Rate:

Hash-

Functions:

With 20.000 distinct updates and 5% error rate: 11 KByte

 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Slow CRUD performance

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

Cache Sketch ctQuery Cache
Sketch

fresh records

Revalidate record & Refresh Cache Sketch

Cache Hits

Fresh record & new Cache Sketch

-time t

-time t + Δ

2

High Abort Rates in OCC

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

Reads

Writes
2

Writes

(Hidden)

validation 4

5Writes (Public)

Read all

prevent conflicting

validations

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads→ Shorter transaction duration → less aborts

3

Committed OR aborted + stale objects

Commit: read- & write-set versions
3

Costly Invalidations

 Solution: Invalidation Minimization
◦ The server Cache Sketch tracks TTLs

◦ Invalidation only necessary, if there are unexpired records

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record Keys

Report Expirations
and Writes

Needs Invalidation?

4

End-to-End Example

Client
Expiration-

based Cache
Invalidation-
based Cache Server

Client Cache
Sketch

Server Cache
Sketch

b={x2}
t = {(x2, t2),

(x3, t3),(x1, t1)}
b= INITIALIZE c={(x2,t2),(x3,t3)} c={(x1,t1)

b={x2}

CONNECT

bt0={x2}
READ x3

QUERY

x3

RESPONSE

false
GET

x3

RESPONSE

x3

QUERY

x2

RESPONSE

true

READ x2

REVALIDATE

x2
c={(x3,t3)}

RESPONSE

x2,t4
c={(x2,t4),(x3,t3)} c={(x2,t4)}

REPORT READ

x2,t4
b={x2}

t = {(x2, t4),
(x3, t3),(x1, t1)}

RESPONSE

inv=true

WRITE x1
PUT

x1=v
REPORT WRITE

x1

RESPONSE

ok

INVALIDATE

x1

b={x1,x2}
t = {(x2, t4),

(x3, t3),(x1, t1)}

 Problem: if TTL ≫ time to next write, then it is
contained in Cache Sketch unnecessarily long

 TTL Estimator: finds „best“ TTL

 Trade-Off:

TTL Estimation
Determining the best TTL

Longer TTLsShorter TTLs

• Higher cache-hit rates
• more invalidations

• less invalidations
• less stale reads

Idea:
1. Estimate average time to next write 𝐸[𝑇𝑤] for each record

2. Weight 𝐸[𝑇𝑤] using the cache miss rate

TTL Estimation
Determining the best TTL

Client

Server

Reads

Misses

λm: Miss Rate
λw: Write Rateco

lle
ct TTL

per record
λm λw

Caches

 Writes
~ Poisson

TTL Estimator

Objective:
-maximize Cache Hits
-minimize Purges
-minimize Stale Reads
-bound Cache Sketch
 false positive rate

 Writes
~ Poisson

 Goal: Analysis of arbitrary caching architectures using
the standard YCSB benchmark
◦ Metrics to evaluate: Latency, Throughput, Cache Hits, Stale

Reads, Invalidations

YCSB Monte Carlo Caching Simulator (YMCA)

Pluggable simulated caches,

choosable topology

YCSB
workload

YMCA
Client

Stale Read
Detector

Cache Miss
Detector

Expiration-
based
Cache

Invalidation-
based
Cache

Database
Server

Pluggable latency distributions

purge

CRUD

CRUDCRUDCRUD

Results: Simulation & real-world

CDN

Northern California

Client MongoDBOrestes

Ireland

Setup:

Page load times with cached
initialization (YMCA):

Average Latency for YCSB
Workloads A and B (real):

Results: Simulation & real-world

CDN

Northern California

Client MongoDBOrestes

Ireland

Setup:

Page load times with cached
initialization (YMCA):

Average Throughput for YCSB
Workloads A and B (real):

 Goal: Efficient Generation of Cache Sketch and
Invalidation Minimization

 Counting Bloom Filter and key→ expiration mapping

The Server Cache Sketch
Scalable Implementation

https://github.com/Baqend/Orestes-Bloomfilter

Add keyx if

x unexpired
Cache Sketch

for Table A

… B

… C

Get Cache Sketch:

Union
(Bitwise OR)

The Big Picture
Implementation in ORESTES

Internet

Cache
Sketch

Reverse-Proxy
Caches

Orestes
Servers

Desktop

Mobile

Tablet
Content-Delivery-
Network

 Cache Sketch is part of ORESTES, a database-
independent Backend-as-a-Service

The Big Picture
Implementation in ORESTES

Internet

Cache
Sketch

Reverse-Proxy
Caches

Orestes
Servers

Desktop

Mobile

Tablet
Content-Delivery-
Network

Polyglot Storage

The Big Picture
Implementation in ORESTES

Internet

Cache
Sketch

Reverse-Proxy
Caches

Orestes
Servers

Desktop

Mobile

Tablet
Content-Delivery-
Network

Database-as-a-Service Middleware:
Caching, Transactions, Schemas,
Authorization, Multi-Tenancy

The Big Picture
Implementation in ORESTES

Internet

Cache
Sketch

Reverse-Proxy
Caches

Orestes
Servers

Desktop

Mobile

Tablet
Content-Delivery-
Network

Standard HTTP Caching

The Big Picture
Implementation in ORESTES

Internet

Cache
Sketch

Reverse-Proxy
Caches

Orestes
Servers

Desktop

Mobile

Tablet
Content-Delivery-
Network

Unified REST API

Future Work
Query-Result-Caching

Cached
Query

ORESTES

Create, Update, Delete

Pub-Sub

operation &
after-image

Caches

Pub-Sub

Cache Sketch &
Invalidator

invalidate
Cache Sketch
of queries

Changed
queries

Stream-Processing:
Which query result sets
changed?

Decision Model:
When is it better to cache
lists of ids vs. full results and
for which TTL – or not at all?

Team: Felix Gessert, Florian Bücklers, Hannes Kuhlmann,
Malte Lauenroth, Michael Schaarschmidt

19. August 2014

Page-Load Times
What impact does the Cache Sketch have?

0
,7

s 1
,8

s 2
,8

s 3
,6

s

3
,4

s

CALIFORNIEN

0
,5

s

1
,8

s 2
,9

s

1
,5

s

1
,3

s

FRANKFURT

0
,6

s

3
,0

s

7
,2

s

5
,0

s 5
,7

s

SYDNEY

0
,5

s

2
,4

s

4
,0

s

5
,7

s

4
,7

s

TOKYO

 Cache Sketch: dual approach to web caching for
database services
◦ Consistent (Δ-atomic) expiration-based caching

◦ Invalidation-based caching with minimal purges

 Keys Ideas:
◦ Maintain Bloom filter of potentially stale objects

◦ Let clients handle cache coherence through revalidations when
an object is contained in the filter

◦ Estimate the best TTL based on access statistics

Summary

Cached
Initialization

Δ-Bounded
Staleness

Conflict-
Avoidant

Transactions

Invalidation
Minimization

Thank you

gessert@informatik.uni-hamburg.de
Orestes.info
Baqend.com

