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If perceived speed is such an 
import factor

...what causes slow page load times?



State of the art
Two bottlenecks: latency und processing

High Latency

Processing Time



Network Latency
The underlying problem of high page load times

I. Grigorik, High performance browser networking. 
O’Reilly Media, 2013.



The low-latency vision
Data is served by ubiquitous web-caches

Low Latency

Less Processing



Expiration-based
Every object has a defined
Time-To-Live (TTL)

Revalidations
Allow clients and caches to
check freshness at the server

The web‘s caching model
Staleness as a consequence of scalability
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Expiration-based
Every object has a defined
Time-To-Live (TTL)

Revalidations
Allow clients and caches to
check freshness at the server

Stale
Data

The web‘s caching model
Staleness as a consequence of scalability

Research Question:
Can database services leverage the web 
caching infrastructure for low latency with rich
consistency guarantees?
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ISP Caches

Content Delivery 
Networks, 
Reverse Proxies

Expiration-based Caches:

 An object x is considered
fresh for TTLx seconds

 The server assigns TTLs 
for each object

Invalidation-based Caches:

 Expose object eviction
operation to the server

Web Caching Concepts
Invalidation- and expiration-based caches
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Needs Revalidation? 

The Cache Sketch approach
Letting the client handle cache coherence
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 Let ct be the client Cache Sketch generated at time t, containing 
the key keyx of every record x that was written before it expired 
in all caches, i.e. every x for which holds:

The Client Cache Sketch

∃ 𝑟(𝑥, 𝑡𝑟 , 𝑇𝑇𝐿), 𝑤 𝑥, 𝑡𝑤 ∶ 𝑡𝑟 + 𝑇𝑇𝐿 > 𝑡 > 𝑡𝑤 > 𝑡𝑟

k hash functions m Bloom filter bits

1 0 0 1 1 0 1 1
h1

hk

...keyfind(key)

Client Cache Sketch

Bits = 1

no

yes

GET request

Revalidation 

Cache

Hit

Miss

key

key



1 4 020

purge(obj)

hashB(oid)hashA(oid)

31 1 110
Flat(Counting Bloomfilter)

hashB(oid)hashA(oid)

Browser
Cache

CDN

1

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

Slow initial page loads1
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 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

Slow initial page loads1

𝑓 ≈ 1 − 𝑒−
𝑘𝑛
𝑚

𝑘

𝑘 = ln 2 ⋅ (
𝑛

𝑚
)

False-Positive

Rate:

Hash-

Functions:

With 20.000 distinct updates and 5% error rate: 11 KByte



 Solution: Δ-Bounded Staleness
◦ Clients refresh the Cache Sketch so its age never exceeds Δ

→ Consistency guarantee: Δ-atomicity

Slow CRUD performance

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

Cache Sketch ctQuery Cache 
Sketch

fresh records

Revalidate record & Refresh Cache Sketch 

Cache Hits

Fresh record & new Cache Sketch

-time t

-time t + Δ

2



High Abort Rates in OCC

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

Reads

Writes
2

Writes

(Hidden)

validation 4

5Writes (Public)

Read all

prevent conflicting 

validations

 Solution: Conflict-Avoidant Optimistic Transactions
◦ Cache Sketch fetched with transaction begin

◦ Cached reads→ Shorter transaction duration → less aborts

3

Committed OR aborted + stale objects

Commit: read- & write-set versions
3



Costly Invalidations

 Solution: Invalidation Minimization
◦ The server Cache Sketch tracks TTLs

◦ Invalidation only necessary, if there are unexpired records

Server Cache Sketch

10201040

10101010

Counting 
Bloom Filter

Non-expired
Record Keys

Report Expirations 
and Writes

Needs Invalidation? 

4



End-to-End Example

Client
Expiration-

based Cache
Invalidation-
based Cache Server

Client Cache 
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b={x2}
t = {(x2, t2),
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b= INITIALIZE c={(x2,t2),(x3,t3)} c={(x1,t1)

b={x2}
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QUERY

x3
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false
GET

x3

RESPONSE

x3

QUERY

x2

RESPONSE

true

READ x2

REVALIDATE

x2
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x2,t4
c={(x2,t4),(x3,t3)} c={(x2,t4)}

REPORT READ

x2,t4
b={x2}

t = {(x2, t4),
(x3, t3),(x1, t1)}

RESPONSE

inv=true

WRITE x1
PUT

x1=v
REPORT WRITE

x1

RESPONSE

ok

INVALIDATE

x1

b={x1,x2}
t = {(x2, t4),

(x3, t3),(x1, t1)}



 Problem: if TTL ≫ time to next write, then it is
contained in Cache Sketch unnecessarily long

 TTL Estimator: finds „best“ TTL

 Trade-Off:

TTL Estimation
Determining the best TTL

Longer TTLsShorter TTLs

• Higher cache-hit rates
• more invalidations

• less invalidations
• less stale reads



Idea: 
1. Estimate average time to next write 𝐸[𝑇𝑤] for each record

2. Weight 𝐸[𝑇𝑤] using the cache miss rate

TTL Estimation
Determining the best TTL

Client

Server

Reads

Misses

λm: Miss Rate
λw: Write Rateco

lle
ct TTL

per record
λm λw

Caches

    Writes
~ Poisson

TTL Estimator

Objective:
-maximize Cache Hits
-minimize Purges
-minimize Stale Reads
-bound Cache Sketch
  false positive rate

    Writes
~ Poisson



 Goal: Analysis of arbitrary caching architectures using
the standard YCSB benchmark
◦ Metrics to evaluate: Latency, Throughput, Cache Hits, Stale

Reads, Invalidations

YCSB Monte Carlo Caching Simulator (YMCA)

Pluggable simulated caches, 

choosable topology

YCSB 
workload

YMCA 
Client

Stale Read 
Detector

Cache Miss 
Detector

Expiration-
based
Cache

Invalidation-
based
Cache

Database 
Server

Pluggable latency distributions

purge

CRUD

CRUDCRUDCRUD



Results: Simulation & real-world

CDN

Northern California

Client MongoDBOrestes

Ireland

Setup: 

Page load times with cached
initialization (YMCA): 

Average Latency for YCSB 
Workloads A and B (real):
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CDN

Northern California

Client MongoDBOrestes
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Setup: 

Page load times with cached
initialization (YMCA): 

Average Throughput for YCSB 
Workloads A and B (real):



 Goal: Efficient Generation of Cache Sketch and
Invalidation Minimization

 Counting Bloom Filter and key→ expiration mapping

The Server Cache Sketch
Scalable Implementation

https://github.com/Baqend/Orestes-Bloomfilter

Add keyx if

x unexpired
Cache Sketch

for Table A

… B

… C

Get Cache Sketch:

Union
(Bitwise OR)



The Big Picture
Implementation in ORESTES

Internet

Cache 
Sketch

Reverse-Proxy
Caches

Orestes
Servers

Desktop

Mobile

Tablet
Content-Delivery-
Network

 Cache Sketch is part of ORESTES, a database-
independent Backend-as-a-Service
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Database-as-a-Service Middleware:
Caching, Transactions, Schemas, 
Authorization, Multi-Tenancy
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The Big Picture
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Future Work
Query-Result-Caching

Cached
Query 

ORESTES

Create, Update, Delete

Pub-Sub

operation &
after-image

Caches

Pub-Sub

Cache Sketch & 
Invalidator

invalidate
Cache Sketch 
of queries

Changed
queries

Stream-Processing:
Which query result sets 
changed?

Decision Model:
When is it better to cache 
lists of ids vs. full results and 
for which TTL – or not at all?
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Page-Load Times
What impact does the Cache Sketch have?
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 Cache Sketch: dual approach to web caching for
database services
◦ Consistent (Δ-atomic) expiration-based caching

◦ Invalidation-based caching with minimal purges

 Keys Ideas:
◦ Maintain Bloom filter of potentially stale objects

◦ Let clients handle cache coherence through revalidations when
an object is contained in the filter

◦ Estimate the best TTL based on access statistics

Summary

Cached
Initialization

Δ-Bounded
Staleness

Conflict-
Avoidant

Transactions

Invalidation 
Minimization



Thank you

gessert@informatik.uni-hamburg.de
Orestes.info
Baqend.com


