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Can we automate the mapping problem?
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Vision
Schemas can be annotated with requirements

- Write Throughput > 10,000 RPS
- Read Availability > 99.9999%
- Scans = true
- Full-Text-Search = true
- Monotonic Read = true

Schema

DBs
Tables
Fields



Vision
The Polyglot Persistence Mediator chooses the database

Application

Database
Metrics

Data and 
Operations

db1 db2 db3

Polyglot Persistence
Mediator

Latency < 30ms

Annotated
Schema



 Goal:
◦ Extend classic workload management to polyglot persistence

◦ Leverage hetereogeneous (NoSQL) databases

Tenant specifies
requirements as Service-
Level-Agreements

Find or provision a 
suitable combination
of databases

Mediate data and
database operations

1. Requirements 2. Resolution 3. Mediation

Towards Automated Polyglot Persistence
Necessary steps



Functional Service Level Objectives
◦ Guarantee a „feature“

◦ Determined by database system

◦ Examples: transactions, join

Non-Functional Service Level Objectives
◦ Guarantee a certain quality of service (QoS)

◦ Determined by database system and service provider

◦ Examples:

 Continuous: response time (latency), throughput

 Binary: Elasticity, Read-your-writes

Service Level Agreements
Expressing application requirements



Utility expresses „value“ of a continuous non-functional
requirement:

𝑓𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑡𝑟𝑖𝑐 → [0,1]

Service Level Agreements
Refining the utility of each SLO



Functional 
Requirements

Scan-Querys

Conditional Updates

Transactions

Query by Example

Joins

Analytics

Elasticity

Consistency

Read-Latency

Write-Latency

Write-Throughput

Scalability of Data Volume

Read Scalability

Read-Availability

Write-Availability

Non-Functional 
Requirements

Durability

Write Scalability

SLA Example
For MongoDB



Step I - Requirements
Expressing the application‘s needs
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Step II - Resolution
Finding the best database

 The Provider resolves the
requirements

 RANK: scores available
database systems

 Routing Model: defines the
optimal mapping from schema
elements to databases

Resolution2

Provider

Capabilities for 
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

2a. If unsatisfiable

Either:
Refuse or
Provision new DB

2b. Generates
routing model

Routing Model
Route schema_element   db
 transform db-independent to db-

specific operations



Step II - Resolution
Ranking algorithm by example
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MySQL, S3, Hbase }
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Step II - Resolution
Ranking algorithm by example

Customers
Table

ECommerceDB
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MySQL 94% 0.04

HBase 99.9%0.9
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40ms0.2

50ms0.1
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Ranking algorithm by example
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Step III - Mediation
Routing data and operations

 The PPM routes data

 Operation Rewriting: 
translates from abstract to
database-specific operations

 Runtime Metrics: Latency, 
availability, etc. are reported
to the resolver

 Primary Database Option: All 
data periodically gets
materialized to designated
database

Mediation3

Application

Polyglot Persistence Mediator
 Uses Routing Model
 Triggers periodic 

materialization
Report
metrics

1. CRUD, queries, 
transactions, etc.

db1 db2 db3

2. route



Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Article

Counter
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Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Article

ID
Title
…

Imp.

Imp.
ID

Document Sorted Set

Found Resolution



Workload Management: during mediation
actively schedule requests based on 
requirements

Ranking: Predict future metrics from historic
ones (time-series analysis) or from
performance models

Database selection: minimize
𝑃 𝑆𝐿𝐴 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ∗ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (e.g. through
reinforcement learning)

Challgenges & Future Work 



Meta-DBaaS: Mediate over DBaaS-systems 
and factor in their SLAs

Live Migration: Enable requirement
changes

Requirements: collect library of common
ones

Utility: Provide intuitive, visual „knobs“ for
developers

Challgenges & Future Work 



 (Manual) Polyglot Persistence is a reality - but difficult
and error-prone

 Polyglot Persistence Mediator: SLA-driven, fine-grained
selection of database systems

1. Let the tenant define his requirements

2. Choose or provision a database based on that

3. Route data and operations according to that mapping

Summary

Requirements Resolution Mediation



Thank you.

gessert@informatik.uni-hamburg.de
Orestes.info
Baqend.com


