Towards Automated Polyglot
Persistence

Michael Schaarschmidt, Felix Gessert, Norbert Ritter
gessert@informatik.uni-hamburg.de

Polyglot Persistence
Current best practice

Application Layer

Nested
o Session data Flles
Application Data
\

Billing Data

Friend . 'r 6 Google Cloud
network I’rllongoDB cass:: Storage
Recommen-
R | Cacheo (?'ata —— Search Index I .) I
& metrics - dation Engine —

Neo . . '
..9 e e redis elasticsearch. 1N Amazon Elasi

Polyglot Persistence
Current best practice

Dynamic Web App

Research Question: @

A
Can we automate the ~ mapping problem?

N

data database

Vision
Schemas can be annotated with requirements

Write Throughput > 10,000 RPS |

- Read Availability > 99.9999%

- Scans = true T
- Full-Text-Search = true
- Monotonic Read = true

Schema

DBs
Tables
Fields

(

Vision
The Polyglot Persistence Mediator chooses the database

Application AN
Data and
Operations
. Annotated
Database 4 **" Polyglot Persistence “*e.p Schema
Metrics " -, -». Mediator &
. | W Latency < 30ms
N N | N

Towards Automated Polyglot Persistence
Necessary steps

Goal:
Extend classic workload management to polyglot persistence
Leverage hetereogeneous (NoSQL) databases

1. Requirements 2. Resolution 3. Mediation
n @
y ==
Tenant specifies Find or provision a Mediate data and
requirements as Service- suitable combination database operations

Level-Agreements of databases

Service Level Agreements
Expressing application requirements

Functional Service Level Objectives
Guarantee a ,feature”
Determined by database system
Examples: transactions, join

Non-Functional Service Level Objectives
Guarantee a certain quality of service (QoS)
Determined by database system and service provider
Examples:

- Continuous: response time (latency), throughput

* Binary: Elasticity, Read-your-writes

Service Level Agreements
Refining the utility of each SLO

Utility expresses ,value® of a continuous non-functional

requirement:
futitity (metric) — [0,1]

1 -

=
J

Utility
Utility

20 ms
Latency

99.5%
Availability

SLA Example
For MongoDB

Functional
Requirements

Scan-Querys

Transactions

Conditional Updates

Joins

Query by Example

Analytics

N\

Non-Functional
Requirements

Scalability of Data Volume

|

Write Scalability

Read Scalability

Elasticity

Read-Availability

Consistency

Write-Availability

Durability

Read-Latency

Write-Throughput

Write-Latency

. mongoDB

Step | - Requirements
Expressing the application’s needs

Tenant annotates schema
with his requirements

/

1. Define
schema

'Database]

/

Table

'\
.
[N
.

S

annotations

Tenant

2. Annotate

\/

Annotations

Continuous non-functional
e.g. write latency < 15ms
Binary functional

e.g. Atomic updates
Binary non-functional

e.g. Read-your-writes

Field Field Field[Field
[| annotated

» |nherits continuous

(1) Requirements

Step | - Requirements
Expressing the application’s needs

Annotation Type Annotated at
Read Availability Continuous
Write Availability Continuous
Read Latency Continuous
Write Latency Continuous
Write Throughput Continuous

Data Vol. Scalability
Write Scalability
Read Scalabilty
Elasticity

Durability
Replicated
Linearizability
Read-your-Writes
Causal Consistency
Writes follow reads
Monotonic Read
Monotonic Write
Scans

Sorting

Range Queries
Point Lookups
ACID Transactions
Conditional Updates
Joins

Analytics Integration
Fulltext Search
Atomic Updates

Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional

Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class
Field/Class
Field/Class
Field/Class
Field/Class
Field/Class
Field

Field

Field

Field

Class/DB

Field

Class/DB
Field/Class/DB
Field
Field/Class

/

Tenant

1. Define
schema

2. Annotate

'Database]

/ %,

Table

Field Field Field[Field
[| annotated

» |nherits continuous

Annotations
Continuous non-functional
e.g. write latency < 15ms
Binary functional
e.g. Atomic updates
e Binary non-functional

e.g. Read-your-writes

!
| ™

/

annotations

(1) Requirements

Step Il - Resolution
Finding the best database

The Provider resolves the
requirements

RANK: scores available
database systems

Routing Model: defines the
optimal mapping from schema
elements to databases

/ Provider \

. Either:
Capabilities for Refuse or

available DBs ¢——— Pprovision new DB
ll. Find optimal 2a. If unsatisfiable
RANK(schema_root, DBs)

through recursive descent
using annotated schema and metrics

2b. Generates
routing model
Routing Model
Route schema_element - db

e transform db-independent to db-
specific operations

(2) Resolution

Step Il - Resolution
Ranking algorithm by example

Annotations Schema
Lineariza- ECommerceDB
bility | database

Availability __j\\\ l

/.

Customers
Table

N

ShoppingBasket UserName
List<String> String

Read latency

N

DBs = { MongoDB, Riak,
Cassandra, CouchDB, Redis,
MySQL, S3, Hbase }

RANK Algorithm

No annotation =2
recursive descent to child

Step Il - Resolution
Ranking algorithm by example

Annotations Schema
Lineariza- ECommerceDB
bility | database
Availability __j\\\ l
Customers
—/////ﬁ Table
ShoppingBasket UserName
List<String> String

Read latency

N

RANK Algorithm

DBs = { MongoDB, Riak,
Cassandra, CouchBB, Redis,
MySQL, $3, Hbase }

Binary requirement =2

1. Exclude DBs that do not
support it

2. Recursive descent

Step Il - Resolution
Ranking algorithm by example

Annotations Schema RANK Algorithm
L'n;ﬁ;'za' ECommerceDB Database Availability
il |
Y database MongoDB 99%->0.8
Availability 1 Redis 95%->0.05
Customers o
ble MySQL 94%-> 0.04
/\ HBase 99.9%—>0.9
ShoppingBasket Continuous requirement -
List<String> String V databases calculate
Read latency db - futiiicy(db. availability)

N

Step Il - Resolution
Ranking algorithm by example

Annotations Schema RANK Algorithm
L'n;ﬁ;'za' ECommerceDB Database Availability Latency
ili |
J database MongoDB 99%->0.8 10ms>1
Availability 1 Redis 95%—=>0.05 1ms—>1
Customers MySQL 94%-> 0.04 40ms=>0.2
Table
/\ HBase 99.9%—2>0.9 50ms—>0.1
ShoppingBasket UserName Continuous requirement =2
List<String> String V databases calculate
Read latency db - futiity(db. latency)

N

Step Il - Resolution
Ranking algorithm by example

Annotations Schema
Lineariza- ECommerceDB

bility | database

Availability __j\\\ l
Customers
_////// Table
ShoppingBasket UserName
List<String> String

Read latency

N

DB Score

MongoDB 0.9
Redis 0.525
MySQL 0.12
HBase 0.5

Binary requirement =2

1. Exclude DBs that do not
support it

2. Recursive descent

3. Pick DB with best total
score and add it to
routing model

Step Il - Resolution
Ranking algorithm by example

Annotations Schema
Lineariza- ECommerceDB
bility | database
Availability __j\\\ l
Customers
_////// Table
ShoppingBasket UserName
List<String> String

Read latency

N

DB Score

MongoDB 0.9
Redis 0.525
MySQL 0.12
HBase 0.5

Binary requirement =2

1. Exclude DBs that do not
support it

2. Recursive descent

3. Pick DB with best total
score and add it to
routing model

Routing Model:

Customers = MongoDB

Step Il - Mediation

Routing data and operations

The PPM routes data

Operation Rewriting:
translates from abstract to
database-specific operations

Runtime Metrics: Latency,
availability, etc. are reported
to the resolver

Primary Database Option: All
data periodically gets
materialized to designated
database

4 Application)

A
[-

1. CRUD, queries,
transactions, etc.

Polyglot Persistence Mediator

e Uses Routing Model
Triggers periodic
materialization

N

metrics

(3) Mediation

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Europaische Zentralbank uberfallen: Bankrauber
erbeutet 1,14 Billionen Euro

s

Article

Frankfurt (dpo) - Eine rekordverdachtige Summe hat

heute Mittag ein Rauber bei einem Uberfall auf die

Europaische Zentralbank (EZB) in Frankfurt

: erbeutet. Der Mann, der inzwischen als Counter
= Kleinkrimineller mit dem Namen Kalle Kowalski (43)

: ! identifiziert wurde, befindet sich derzeit mit 1,14

Billionen Euro auf der Flucht. Der Stadtteil Ostend ist vollstandig abgeriegelt.

mehr...
1.344.222 gelesen

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Mediator q

. mongoDB

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Counter updates kill performance

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Mediator q

é redis

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

No powerful queries

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Article Imp.

E 1500

ID <« Imp. =

Title ID g 1000 \
Q
®

Document Sorted Set 0 A% &
7500 9500 11500 13500 15500 17500
. mongoDB e redis Actual throughput in OPS
=@=_C0restes with PPM == QOrestes without PPM Varnish

Found Resolution

Challgenges & Future Work

X

AN/

Workload Management: during mediation
actively schedule requests based on
requirements

Ranking: Predict future metrics from historic
ones (time-series analysis) or from
performance models

Database selection: minimize
P(SLA violation) * penalty (e.g.through
reinforcement learning)

Challgenges & Future Work

Meta-DBaaS: Mediate over DBaaS-systems
and factor in their SLAs

Live Migration: Enable requirement

=

Requirements: collect library of common
ones

HHH Utility: Provide intuitive, visual , knobs” for
developers

gl o
3 6\? g
al b o
Summary .
ol 2
(Manual) Polyglot Persistence is a reality - but difficult
and error-prone
Polyglot Persistence Mediator: SLA-driven, fine-grained
selection of database systems
1. Let the tenant define his requirements
2. Choose or provision a database based on that

3. Route data and operations according to that mapping

L) L) @
- -
*

Requirements Resolution Mediation

Thank you.

gessert@informatik.uni-hamburg.de
Orestes.info

Bagend.com

