
Michael Schaarschmidt, Felix Gessert, Norbert Ritter
gessert@informatik.uni-hamburg.de

Towards Automated Polyglot
Persistence

Polyglot Persistence
Current best practice

Application Layer

Billing Data Nested
Application Data

Session data

Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage
Friend

network Cached data
& metrics

Recommen-
dation Engine

Polyglot Persistence
Current best practice

Application Layer

Billing Data Nested
Application Data

Session data

Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage
Friend

network Cached data
& metrics

Recommen-
dation Engine

Research Question:

Can we automate the mapping problem?

data database

Vision
Schemas can be annotated with requirements

- Write Throughput > 10,000 RPS
- Read Availability > 99.9999%
- Scans = true
- Full-Text-Search = true
- Monotonic Read = true

Schema

DBs
Tables
Fields

Vision
The Polyglot Persistence Mediator chooses the database

Application

Database
Metrics

Data and
Operations

db1 db2 db3

Polyglot Persistence
Mediator

Latency < 30ms

Annotated
Schema

 Goal:
◦ Extend classic workload management to polyglot persistence

◦ Leverage hetereogeneous (NoSQL) databases

Tenant specifies
requirements as Service-
Level-Agreements

Find or provision a
suitable combination
of databases

Mediate data and
database operations

1. Requirements 2. Resolution 3. Mediation

Towards Automated Polyglot Persistence
Necessary steps

Functional Service Level Objectives
◦ Guarantee a „feature“

◦ Determined by database system

◦ Examples: transactions, join

Non-Functional Service Level Objectives
◦ Guarantee a certain quality of service (QoS)

◦ Determined by database system and service provider

◦ Examples:

 Continuous: response time (latency), throughput

 Binary: Elasticity, Read-your-writes

Service Level Agreements
Expressing application requirements

Utility expresses „value“ of a continuous non-functional
requirement:

𝑓𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑡𝑟𝑖𝑐 → [0,1]

Service Level Agreements
Refining the utility of each SLO

Functional
Requirements

Scan-Querys

Conditional Updates

Transactions

Query by Example

Joins

Analytics

Elasticity

Consistency

Read-Latency

Write-Latency

Write-Throughput

Scalability of Data Volume

Read Scalability

Read-Availability

Write-Availability

Non-Functional
Requirements

Durability

Write Scalability

SLA Example
For MongoDB

Step I - Requirements
Expressing the application‘s needs

Requirements1

Database

Table

Field Field Field

1. Define
schema

Tenant

Inherits continuous
annotations

annotated

Table

Field

 Tenant annotates schema
with his requirements

Annotations
 Continuous non-functional

e.g. write latency < 15ms
 Binary functional

e.g. Atomic updates
 Binary non-functional

e.g. Read-your-writes

2. Annotate

Step I - Requirements
Expressing the application‘s needs

Requirements1

Database

Table

Field Field Field

1. Define
schema

Tenant

Inherits continuous
annotations

annotated

Table

Field

 Tenant annotates schema
with his requirements

Annotations
 Continuous non-functional

e.g. write latency < 15ms
 Binary functional

e.g. Atomic updates
 Binary non-functional

e.g. Read-your-writes

2. Annotate

Step II - Resolution
Finding the best database

 The Provider resolves the
requirements

 RANK: scores available
database systems

 Routing Model: defines the
optimal mapping from schema
elements to databases

Resolution2

Provider

Capabilities for
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

2a. If unsatisfiable

Either:
Refuse or
Provision new DB

2b. Generates
routing model

Routing Model
Route schema_element db
 transform db-independent to db-

specific operations

Step II - Resolution
Ranking algorithm by example

Customers
Table

ECommerceDB
database

ShoppingBasket
List<String>

UserName
String

Lineariza-
bility

Availability

Read latency

SchemaAnnotations

No annotation
recursive descent to child

RANK Algorithm

DBs = { MongoDB, Riak,
Cassandra, CouchDB, Redis,

MySQL, S3, Hbase }

Step II - Resolution
Ranking algorithm by example

Customers
Table

ECommerceDB
database

ShoppingBasket
List<String>

UserName
String

Lineariza-
bility

Availability

Read latency

SchemaAnnotations

No annotation
recursive descent to child

RANK Algorithm

Binary requirement
1. Exclude DBs that do not

support it
2. Recursive descent

DBs = { MongoDB, Riak,
Cassandra, CouchDB, Redis,

MySQL, S3, Hbase }

Step II - Resolution
Ranking algorithm by example

Customers
Table

ECommerceDB
database

ShoppingBasket
List<String>

UserName
String

Lineariza-
bility

Availability

Read latency

SchemaAnnotations RANK Algorithm

Continuous requirement
∀ databases calculate

𝑑𝑏 → 𝑓𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝑑𝑏. 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

Database Availability

MongoDB 99%0.8

Redis 95%0.05

MySQL 94% 0.04

HBase 99.9%0.9

Step II - Resolution
Ranking algorithm by example

Customers
Table

ECommerceDB
database

ShoppingBasket
List<String>

UserName
String

Lineariza-
bility

Availability

Read latency

SchemaAnnotations RANK Algorithm

Continuous requirement
∀ databases calculate

𝑑𝑏 → 𝑓𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝑑𝑏. 𝑙𝑎𝑡𝑒𝑛𝑐𝑦)

Database Availability

MongoDB 99%0.8

Redis 95%0.05

MySQL 94% 0.04

HBase 99.9%0.9

Latency

10ms1

1ms1

40ms0.2

50ms0.1

Step II - Resolution
Ranking algorithm by example

Customers
Table

ECommerceDB
database

ShoppingBasket
List<String>

UserName
String

Lineariza-
bility

Availability

Read latency

SchemaAnnotations RANK Algorithm

Binary requirement
1. Exclude DBs that do not

support it
2. Recursive descent
3. Pick DB with best total

score and add it to
routing model

DB Score

MongoDB 0.9

Redis 0.525

MySQL 0.12

HBase 0.5

Step II - Resolution
Ranking algorithm by example

Customers
Table

ECommerceDB
database

ShoppingBasket
List<String>

UserName
String

Lineariza-
bility

Availability

Read latency

SchemaAnnotations RANK Algorithm

Binary requirement
1. Exclude DBs that do not

support it
2. Recursive descent
3. Pick DB with best total

score and add it to
routing model

DB Score

MongoDB 0.9

Redis 0.525

MySQL 0.12

HBase 0.5

Routing Model:
Customers MongoDB

Step III - Mediation
Routing data and operations

 The PPM routes data

 Operation Rewriting:
translates from abstract to
database-specific operations

 Runtime Metrics: Latency,
availability, etc. are reported
to the resolver

 Primary Database Option: All
data periodically gets
materialized to designated
database

Mediation3

Application

Polyglot Persistence Mediator
 Uses Routing Model
 Triggers periodic

materialization
Report
metrics

1. CRUD, queries,
transactions, etc.

db1 db2 db3

2. route

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Article

Counter

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Mediator

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Mediator

Counter updates kill performance

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Mediator

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Mediator

No powerful queries

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Article

ID
Title
…

Imp.

Imp.
ID

Document Sorted Set

Found Resolution

Workload Management: during mediation
actively schedule requests based on
requirements

Ranking: Predict future metrics from historic
ones (time-series analysis) or from
performance models

Database selection: minimize
𝑃 𝑆𝐿𝐴 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ∗ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (e.g. through
reinforcement learning)

Challgenges & Future Work

Meta-DBaaS: Mediate over DBaaS-systems
and factor in their SLAs

Live Migration: Enable requirement
changes

Requirements: collect library of common
ones

Utility: Provide intuitive, visual „knobs“ for
developers

Challgenges & Future Work

 (Manual) Polyglot Persistence is a reality - but difficult
and error-prone

 Polyglot Persistence Mediator: SLA-driven, fine-grained
selection of database systems

1. Let the tenant define his requirements

2. Choose or provision a database based on that

3. Route data and operations according to that mapping

Summary

Requirements Resolution Mediation

Thank you.

gessert@informatik.uni-hamburg.de
Orestes.info
Baqend.com

