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NoSQL Foundations and
Motivation

The NoSQL Toolbox:
Common Techniques

NoSQL Systems &
Decision Guidance

Scalable Real-Time
Databases and Processing

The Database Explosion
NoSQL: Motivation and
Origins
The 4 Classes of NoSQL
Databases:
e Key-Value Stores
Wide-Column Stores
* Document Stores
 Graph Databases
CAP Theorem



Introduction: What are NoSQL
data stores?

e .




Architecture
Typical Data Architecture:

Analytics Reporting Data Mining

The era of one-size-fits-all database systems is over

ytics

—> Specialized data systems
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S

N Applications
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The Database Explosion

Sweetspots

RDBMS

General-purpose
ACID transactions

I ¥ °
®

HBASE
Wide-Column Store

Long scans over
structured data

?® Neoyj

@ the graph database

Graph Database

Graph algorithms
& queries

74 Greenplum

Parallel DWH

Aggregations/OLAP for
massive data amounts

. mongoDB

Document Store

Deeply nested
data models

&B redis

In-Memory KV-Store
Counting & statistics

Volt

NewSQL

High throughput
relational OLTP

sriak
Key-Value Store

Large-scale
session storage

o

cassandra

Wide-Column Store

Massive user-
generated content



The Database Explosion
Cloud-Database Sweetspots

g Firebase . Amazon RDS
Managed RDBMS

General-purpose
ACID transactions

Realtime BaaS

Communication and
collaboration

Amazon

‘—| Azure Tables DynamoDB
Wide-Column Store Wide-Column Store
Very large tables Massive user-

generated content

Google Cloud
Managed NoSQL Object Store
Full-Text Search Massive File

Storage

Amazon
=% ElastiCache

Managed Cache

Caching and
transient storage

Backend-as-a-Service

Small Websites
and Apps

‘ Amazon Elastic
MapReduce
Hadoop-as-a-Service

Big Data Analytics



How to choose a database system?
Many Potential Candidates

Question in this tutorial: @

A
How to approach the ~ decision problem?

N

requirements database




NoSQL Databases

,NoSQL" term coined in 2009
Interpretation: ,,Not Only SQL”

Typical properties:
Non-relational
Open-Source
Schema-less (schema-free
Optimized for distribution (clusters
Tunable consistency

NoSQL-Databases.org:
Curvent list has over 225
NoSQL systems
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NoSQL Databases

Two main motivations:

Scalability Impedance Mismatch

LID <> | Line Item 1: ...
Customer /\\Lme ltem2: ... Q\\
Payment: Credit Card, ... \
[}
- e
User-generated data, —
Request load
> o S Line Items
- @ S== Orders
— 11—

I A___

Payment
y Customers



Scale-up vs Scale-out

Scale-Up (vertical
scaling):

7

Scale-Out (horizontal
scaling):

More RAM
More CPU

—
—

(@

More HDD

|
((C
(O (©

Hardware

Shared-Nothing
Architecture




Schemafree Data Modeling
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NoSQL DB:

Item[Price] -
Item[Discount]

SELECT Name, Age

FROM Customers lW\p(icit
schema
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Explicit
schema




Big Data
The Analytic side of NoSQL

ldea: make existing massive, unstructured data

amounts usable

» Structured data (DBs)

* Logfiles

 Documents, Texts, Tables

* Images, Videos

* Sensor data

* Social Media, Data Services

Sources

e Statistics, Cubes, Reports

o « Recommender
Analyst, Data Scientist, * Classificators, Clustering
Software Developer « Knowledge



NoSQL Paradigm Shift

Open Source & Commodity Hardware

u ¥ |

Commercial DBMS Open-Source DBMS

i ri;,
EEE
-

Specialized DB hardware

(Oracle Exadata, etc.) Commodity hardware

Highly available network
(Infiniband, Fabric Path, etc.)

Commodity network
(Ethernet, etc.)

Highly Available Storage (SAN,
RAID, etc.)

Commodity drives (standard
HDDs, JBOD)



NoSQL Paradigm Shift
Shared Nothing Architectures

Shift towards higher distribution & less coordination:

20000006 000¢
MEMMMMEMMMM

M| M| M
i L 1 s
Shared Memory | Shared Disk | Shared Nothing
e.g. "Oracle 11g" e.g. "Oracle RAC" e.g. "NoSQL"




NoSQL System Classification

Two common criteria:

Data
Model

Key-Value
Wide-Column

Document

Graph

Consistency/Availability
Trade-Off

, AP: Available & Partition
Tolerant

CP: Consistent &
d . )
Partition Tolerant

, CA: Not Partition
Tolerant



Key-Value Stores

Data model: (key) -> value
Interface: CRUD (Create, Read, Update, Delete)

users:2:friends —> {23, 76, 233, 11}
Value:

users:2:inbox — [234, 3466, 86,55 An opaque blob

users:2:settings —> Theme — "dark", cookies — "false" Z

7

Examples: Amazon Dynamo (AP), Riak (AP), Redis (CP)

Key



Wide-Column Stores

Data model: (rowkey, column, timestamp) -> value
Interface: CRUD, Scan

Versions (timestamped)

Row Key Column /
com.chn.www content : "<html>..." title: "CNN" crawled: ...

Examples: Cassandra (AP), Google BigTable (CP),
HBase (CP)



Document Stores

Data model: (collection, key) -> document
Interface: CRUD, Querys, Map-Reduce

ID/Key JSON Document

N\order-12338 - {

order-id: 23,
customer: { name : "Felix Gessert", age : 25 }
line-items : [ {product-name : "x", ...}, ...]

}

—

Examples: CouchDB (AP), RethinkDB (CP), MongoDB
(CP)



Graph Databases

Data model: G = (V, E): Graph-Property Modell

Interface: Trave ' ' ‘ . transactions
Nod .
%S usually unscalable Properties
company: (optimal partitioning %
Apple is NP-complete) _  name:
value: John Doe
300Mrd
Examples: iNeu4) (cAa), nnnnweuiaph (CA), OrientDB

(CA)



Search Platforms

Data model: vectorspace model, docs + metadata
Examples: Solr, ElasticSearch

POST /lectures/dis

{ ,,topic": ,,databases", REST API
slecturer": ,ritter",

.}

Doc.
Search Server oc.3
| | | Key Value
Term Document Value
database 3,4,1 Value
ritter 1
Doc. 4
Inverted Index
Key Value
Key Value Key  Value
Key  Value Key Value
Key  Value




Object-oriented Databases

Data model: Classes, objects, relations (references)
Interface: CRUI '

- -not scalable

Properties —  -strong coupling
between programming Classes
l[anguage and database &

Examples: Versant (CA), db4o (CA), Objectivity (CA)



XML databases, RDF Stores

Data model: XML, RDF

Interface: CRUI - 7 ys, SPARQL),
transactions (s

-not scalable
Examples: Ma  -not widely used iph (CA)

-specialized data
model



Distributed File System

Data model: files + folders

Network FS Cluster FS

Client iwg iwg
lRPC -WPC

1/0 Nodes

Distributed FS

Stub

i | oy U

NFS, AFS GPFS, Lustre




Big Data Batch Processing

Data model: arbitrary (frequently unstructured)

Examples: Hadoop, Spark, Flink, DryadLink, Pregel

Log files

Unstructured
=== | Files

g Databases

Data

Algorithms

-Aggregation
-Machine
Learning
-Correlation
-Clustering

Batch Analytics

Statistics,
Models



Big Data Stream Processing
Covered in Depth in the Last Part

Data model: arbitrary
Examples: Storm, Samza, Flink, Spark Streaming

Sensor Data
- Notifications

& 10T
- Statistics &
==llog Aggregates
==] Streams - Recommen-
"y DB Change dations
tﬁ Streams i I\/Iode.Is
- Warnings

Real-Time Data Stream Processing



Real-Time Databases
Covered in Depth in the Last Part

Data model: several data models possible
Interface: CRUD, Querys + Continuous Queries

Subscribing Real-Time Change
Client £ Notifications
\ | = Subscribe

Real-Time
DB

—)
[ P Insert
’¥ | —

Examples: Firebase (CP), Parse (CP), Meteor (CP),
Lambda/Kappa Architecture



Soft NoSQL Systems

Not Covered Here

Search Platforms (Full Text Search):

S No persistence and consistency guarantees for OLTP
Examples: ElasticSearch (AP), Solr (AP)

Object-Oriented Databases:
5 Strong coupling of programming language and DB
Examples: Versant (CA), db4o (CA), Objectivity (CA)

XML-Databases, RDF-Stores:

</> Not scalable, data models not widely used in industry
Examples: MarkLogic (CA), AllegroGraph (CA)



CAP-Theorem

| Only 2 out of 3 properties are
Consistency achievable at a time:

Consistency: all clients have the same
view on the data

| Tllalgtr';fcne ' Availability Ayailability: every request to a non-
| failed node most result in correct
response
Partition tolerance: the system has to
continue working, even under
arbitrary network partitions
[mpossible

1] Eric Brewer, ACM-PODC Keynote, Juli 2000

m Gilbert, Lynch: Brewer's Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services, SigAct News 2002



CAP-Theorem: simplified proof

Problem: when a network partition occurs, either
consistency or availability have to be given up

Block response until Response before
ACK arrives successful replication
- Consistency = Availability

Value =V, Value =V,

Network partition



NoSQL Triangle

Relational

. Data models | Key-Value
Every client can always

read and write Document-Oriented
CA AP
Oracle, MySQL, ... Dynamo, Redis, Riak, Voldemort
SimpleDB

CcpP

All nodes continue
Postgres, MySQL Cluster, Oracle RAC

working under network
partitions

All clients share the
same view on the data

MongoDB, RethinkDB, DocumentsDB

m Nathan Hurst: Visual Guide to NoSQL Systems
http://blog.nahurst.com/visual-guide-to-nosql-systems



PACELC - an alternative CAP formulation

|dea: Classify systems according to their behavior
during network partitions

es
y Partiti no
on
| | No consequence of the |

CAP theorem

Avail- Con- Con-

ability sistency sistency
AL - Dynamo-Stylé  AC- MongoDB ™ CC — Always Consistent
Cassandra, Riak, etc. HBase, BigTable and ACID systems

m Abadi, Daniel. "Consistency tradeoffs in modern distributed
database system design: CAP is only part of the story."



Serializability
Not Highly Available Either
Global serializability and availability are incompatible:

—_J Write B=1
= Read A

Write A=1
Read B ==

wi(a=1)r(b=1) wyo(b=1)r(a=1)

Some weaker isolation levels allow high availability:

RAMP Transactions (P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, und I. Stoica, ,Scalable
Atomic Visibility with RAMP Transactions”, SIGMOD 2014)

m S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in
partitioned networks. ACM CSUR, 17(3):341-370, 1985.



Impossibility Results
Consensus Algorithms Safety ]

Properties

Consensus:
Agreement: No two processes can comr «t different decisions
Vaalidity (Non-triviality): If all initial values are same, nodes must

commit that value Liveness
Termination: Nodes commit eventually Property

No algorithm guarantees termination (FLP)

Algorithms:

Paxos (e.g. Google Chubby, Spanner, Megastore, Aerospike,
Cassandra Lightweight Transactions)

Raft (e.g. RethinkDB, etcd service)
Zookeeper Atomic Broadcast (ZAB)

m Lynch, Nancy A. Distributed algorithms.
Morgan Kaufmann, 1996.



Where CAP fits in

Negative Results in Distributed Computing

Asynchronous Network,
Unreliable Channel

Atomic Storage

Impossible:
CAP Theorem

Consensus

Impossible:
2 Generals Problem

Asynchronous Network,
Reliable Channel

Atomic Storage

Possible:
Attiya, Bar-Noy, Dolev (ABD)
Algorithm

Consensus

Impossible:
Fisher Lynch Patterson (FLP)
Theorem

m Lynch, Nancy A. Distributed algorithms.
Morgan Kaufmann, 1996.



ACID vs BASE

ﬂAC|D

,,gold standard‘
for RDBMSs Atomicity

Consistency

Isolation

Durability

BASE <_

Model of many
Basically NoSQL SgSt@VV\S

Available
Soft State

Eventually
Consistent

m http://queue.acm.org/detail.cfm?id=1394128



Weaker guarantees in a database?!
Default Isolation Levels in RDBMSs

Database Default Isolation Maximum Isolation
Actian Ingres 10.0/10S < S
Aerospike RC

?

Cliictriv CI X A10N

Theorem:
Trade-offs are central to database systems.

S

Postgres 9.2.2 RC

SAP HANA RC SI

ScaleDB 1.02 RC RC

VoltDB S S

RC: read committed, RR: repeatable read, S: serializability, m Bai!is, Peter, et al. "Hi.ghly available transactions: Virtues and
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

SI: snapshot isolation, CS: cursor stability, CR: consistent read
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Outline

 Techniques for Functional
and Non-functional
Requirements

5 NoSQL Foundations and
=/ Motivation

| e Sharding
. J The NoSQL Toolbox: * Replication
~— Common Techniques e Storage Management

* Query Processing

NoSQL Systems &
Decision Guidance

Scalable Real-Time
Databases and Processing

0B



enable enable

Functional Central
Require- techniques Operational
ments from NoSQL Require-
the databases ments
application employ
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NoSQL Database Systems:
A Survey and Decision Guidance

Felix Gessert, Wolfram Wingerath, Steffen Friedrich, and Norbert Ritter

Universitit Hamburg, Germany
{gessert|, wingerath, friedrich, ritter}@informatik.uni-hamburg.de

Abstract. Today, data is generated and consumed at unprecedented
scale. This has lead to novel approaches for scalable data management
subsumed under the term “NoSQL” database systems to handle the ever-
increasing data volume and request loads. However, the heterogeneity
and diversity of the numerous existing systems impede the well-informed
selection of a data store appropriate for a given application context.
Therelore, this article gives a top-down overview ol the lield: Instead
of contrasting the implementation specilics of individual representatives,
we propose a comparative classification model that relates functional and
non-functional requirements to techniques and algorithms employed in
NoSQL databases. This NoSQL Toolbox allows us to derive a simple
decision tree to help practitioners and researchers filter potential system
candidates based on central application requirements.

1 Introduction

Traditional relational database management systems (RDBMSs) provide
powerful mechanisms to store and query structured data under strong con-
sistency and transaction guarantecs and have reached an unmatched level of
reliability, stability and support through decades of development. In recemnt
vears, however, the amount of useful data in some application areas has become
so vast that it cannot be stored or processed by traditional database solutions.
User-generated content in social networks or data retrieved from large sensor
networks are only two examples of this phenomenon commonly referved to as
Big Data [35]. A class of novel data storage systems able to cope with Big Data
are subsumed under the term NoSQL databases, many of which offer hori-
zontal scalability and higher availability than relational databases by sacrificing
querying capabilities and consistency guarantees. These trade-offs are pivotal for
service-oriented computing and as-a-service models, since any stateful service
can only be as scalable and fault-tolerant as its underlying data store.

There are dozens of NoSQL database systems and it is hard to keep track of
where they excel, where they fail or even where they differ, as implementation
details change quickly and feature sets evolve over time. In this article, we there-
fore aim to provide an overview of the NoSQL landscape by discussing employed
concepts rather than system specificities and explore the requirements typically
posed to NoSQL database systems, the techniques used to fulfil these require-
ments and the trade-offs that have to be made in the process. Our focus lies
on key-value, document and wide-column stores, since these NoSQL categories
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Functional Techniques Non-Functional

Sharding

Scan Queries Data Scalability

Range-Sharding

Hash-Sharding

Entity-Group Sharding Write Scalability

ACID Transactions Consistent Hashing
Shared-Disk Read Scalability
Conditional or Atomic Writes Elasticity
Joins

Sorting




Sharding (aka Partitioning, Fragmentation)
Scaling Storage and Throughput

Horizontal distribution of data over nodes

Peter

Partitioning strategies: Hash-based vs. Range-based
Difficulty: Multi-Shard-Operations (join, aggregation)



Sharding

Approaches

Hash-based Sharding

Hash of data values (e.g. key) d MongoDB, Riak, Redis,
Pro: Even distribution Cassandra, Azure Table,

Contra: No data locality D”ao ’
. mplemented 1n
Range-based Sharding P
Assigns ranges defined over fie BigTable, HBase, DocumentDB

Pro: Enables Range Scans and ¢ Hypertable, MongoDB,
RethinkDB, Espresso

Contra: Repartitioning/balancir ' "
Entity-Group Sharding

Explicit data co-location for sin| G-Store, MegaStore,
Pro: Enables ACID Transactions Relational Cloud, Cloud SQL
Contra: Partitioning not easily ¢ >¢"ver

m David J DeWitt and Jim N Gray: “Parallel database systems: The future of high performance
database systems,” Communications of the ACM, volume 35, number 6, pages 85—98, June 1992.



Problems of Application-Level Sharding

Web
Example: Tumblr Server

Caching @

Sharding from

. . MySQL
application y>Q

Moved towards:
Redis
HBase



Functional

ACID Transactions

Conditional or Atomic Writes

Techniques

Replication

Commit/Consensus Protocol
Synchronous

Asynchronous

Primary Copy

Update Anywhere

Non-Functional

Read Scalability

Consistency

Write Latency

Read Latency

Read Availability

Write Availability




Replication
Read Scalability + Failure Tolerance

Stores N copies of each data item

nc‘nrof‘ousl

achronoY> DB Node

DB Node

Consistency model: synchronous vs asynchronous
Coordination: Multi-Master, Master-Slave

m Ozsu, M.T., Valduriez, P.: Principles of distributed database systems.
Springer Science & Business Media (2011)



Replication: When

Asynchronous (lazy)

Writes are acknowledged imn [mplemented in

Performed through log shippii Dynamo , Riak, CouchDB,
Pro: Fast writes, no coordinati Redis, Cassandra, Voldemort,

Contra: Replica data potentiall 1 °"8°P8 Aallil (D12
Synchronous (eager)

The node accepting writes syn RIS SNtS T I =<

updates/transactions before ¢
BigTable, HBase, Accumulo,

Pro: Consistent CouchBase, MongoDB,
Contra: needs a commit protd RethinkDB

unavaialable under certain network partitions

m Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)



Replication: Where

Master-Slave (Primary Copy)

Only a dedicated master is allowed to accept writes, slaves are
read-replicas

Pro: reads from the master are consistent
Contra: master is a bottleneck and SPOF

Multi-Master (Update anywhere)

The server node accepting the writes synchronously
propagates the update or transaction before acknowledging
Pro: fast and highly-available

Contra: either needs coordination protocols (e.g. Paxos) or is
Inconsistent

m Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)



Synchronous Replication
Example: Two-Phase Commit is not partition-tolerant

4
5 o~ E
|
l

] e =
cprapaited qepaitd




Consistency Levels

Strategies: A
Achievable with high availability Lineari- «  Single-mastered reads and
Bailis, Peter, et al. "Bolt-on causal zability writes
consistency.” SIGMOD, 2013. e Multi-master replication with
consensus on writes Y,
Causal
Consistency
Pa
If a value is read, any causally s aclientreadsin pne session are prsion-based or
relevant data items that lead to | [on increase ered on all ed. Both not
that value are available, too. onically. ailable.
Vg N
Writes Read Your Monotonic Monotonic Bounded
Follow Reads Writes Reads Writes Staleness
m Viotti, Paplo, an.d Marko Vukolic. "Consistelr'1cy ilj Non- m Bai!is, I?eterlf et al. "Highly available transactions: Virtues and
Transactional Distributed Storage Systems." arXiv (2015). limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.



Problem: Terminology

& A I-atomicity
5 Sequential

Eventual
linearizability

- Staleness-based Strong
p models y,  eventual

J,"' Per-object h “

| models \
| Bounded /' Processor .
i fork-join ! ) k-atomicity ! Eventual
| causal _ / Bounded 1‘ Y| serializability
| Vo Weak ordering \ staleness B A
! Per-key Perrecord | | S & [ T -
: sequential imeli i Vi Delta i | !
| equ ‘\ h.m;ime 1 Release Vi T2 kreguar i ! Composite and tunable !
Coherence | i . i L |
: | « Hybrid |
I\Fork—jom i ! = Tunable i
' causal i ! = Rationing i
Y i+ RedBlue !
! i = Conit !
S PBS ,'I i + Vector-field |
. i | = PBS =kt>-staleness |
fsafe Staleness T
"__Writesi‘f;goRﬁ.;—reads o £
"Troe-.____ Session models
Quiescent
m V., Paolo, and M. Vukoli¢. "Consistency in Non-Transactional m Bailis, Peter, et al. "Highly available transactions: Virtues and

Distributed Storage Systems." ACM CSUR (2016). limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.



Read Your Writes (RYW)

Definition: Once the user has written a value, subsequent reads will
return this value (or newer versions if other writes occurred in
between); the user will never see versions older than his last write.

A2 N Reoding Vowr Locves

Seson,

2C

. i K \2 \2 )

(epicay
X
y ® E & 12
Conyvzeay ? / < ¥4 /
m https://blog.acolyer.org/2016/02/26/distributed-consistency- m Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud

and-session-anomalies/ and Distributed Databases. De Gruyter, 2015.



Monotonic Reads (MR)

Definition: Once a user has read a version of a data item on one replica
server, it will never see an older version on any other replica server

sess/ b4 A1 Non-monoronac
& ,"’ ! g
4 ’.X.-‘_ ®V10 B \ @v.‘." sy \(DV:\ P i ‘wv'.\ —— \Ovu - \@\I;\ —
(cp\'.us 1 B
’x’l @v:o -—-—————'®v:° s @vgb iy \qu — ‘st\‘. _....___.‘Ov:‘ s —
v XX 3 O i
=0 mam——— @ -
vz @vzo — @“D == ev:o \ Ovzy
Consisventy 2 \/ X D4 1% "¢ \/
m https://blog.acolyer.org/2016/02/26/distributed-consistency- m Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud

and-session-anomalies/ and Distributed Databases. De Gruyter, 2015.



Montonic Writes (MW)

Definition: Once a user has written a new value for a data item in a
session, any previous write has to be processed before the current
one. l.e., the order of writes inside the session is strictly maintained.

Sesswong .
NON -~onGFon C
7' LAk (owr A orr)w—)
%esswni : , T T G
x, O S S S S S
a O o) o 10 s )
[(TANT " 10 1)
A O (o) (o)
4 VA= 0 s
1 O (o) R
o 10 10 \o
commsent) v ~ - o X iy
https://blog.acolyer.org/2016/02/26/distributed-consistency- m Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud
and Distributed Databases. De Gruyter, 2015.

m and-session-anomalies/



Writes Follow Reads (WFR)

Definition: When a user reads a value written in a session after that
session already read some other items, the user must be able to see

those causally relevant values too.

S€>§\m 4
Sessvon
-, 5¢
g t()\/lm} Wy o Ta)
A~ O o
Conmviskenr 2 N4

m https://blog.acolyer.org/2016/02/26/distributed-consistency-

and-session-anomalies/

WoRes ‘. FO\AM3

/7\ Recely
s [r s ¢ S
Oy ™ 10 o /< 10
0 0 \O

m Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud
and Distributed Databases. De Gruyter, 2015.



PRAM and Causal Consistency

Combinations of previous session consistency guarantess
PRAM = MR + MW + RYW

Causal Consistency = PRAM + WFR

All consistency level up to causal consistency can be
guaranteed with high availability

Example: Bolt-on causal consistency

Client Machine
| client | { client | | client |

n put (k,v,a) lT get(k)lT

Shim local

metadata | store

put(k,v') |T get(k)
F———-=-- __—
Eventually
. , —
gotnSISsttent - | m Bailis, Peter, et al. "Bolt-on causal consistency."
| ata store

Proceedings of the 2013 ACM SIGMOD, 2013.



Bounded Staleness

Either time-based:

t-Visibility (A-atomicity): the inconsistency window comprises
at most t time units; that is, any value that is returned upon
a read request was up to date t time units ago.

Or version-based:

k-Staleness: the inconsistency window comprises at most k
versions; that is, lags at most k versions behind the most
recent version.

Both are not achievable with high availability

m Wiese, Lena. Advanced Data Management: For SQL, NoSQL, Cloud
and Distributed Databases. De Gruyter, 2015.



Functional Techniques Non-Functional

Storage Management

Logging Read Latency
Update-in-Place

Caching

In-Memory Storage Write Throughput
Append-Only Storage

Durability




NoSQL Storage Management

In a Nutshell

Improves
latency.
Typical Uses in DBMSs:
A In-Memory/

< RR|| SR | , Exdifing Data [¢ Caching

LO" e Primary Storage -

> RW | SW e Data Structures s good for
» read latency.
Q \. ___/ ™~ Update-In-
< RR || SR | e Caching
5 § e Logging If |; - Place
S S\W | ¢ Primary Storage
n @ Increases write

© T Append-Only

g throughput. /0

g . >R * Logging Log < Logging
T W e Primary Storage
S Persistent Storage yd
\ —

. Low Performance RR: Random Reads SR: Sequential Reads Promotes durability of

[ ] High Performance RW: Random Writes SW: Sequential Writes write operations.




Functional Techniques Non-Functional

Joins

Sorting

Read Latency

Filter Queries

Query Processing

Full-text Search Global Secondary Indexing

Local Secondary Indexing
Query Planning

Analytics Framework

Aggregation and Analytics Materialized Views




Local Secondary Indexing
Partitioning By Document

-

~N

Partition | Partition Il

K ) K |

= Implemented in =Y Color
oS 12 F Yellow
O 56 £ * MongoDB Blue

77 r* Riak Blue

e (Cassandra
. Term n ¢ Elasticsearch Match
§ Red N SolrCloud (104]
—  Blue | * VoltDB [188,192]
Scatter-gather query
pattern.
WHERE color=blue

m Kleppmann, Martin. "Designing data-intensive
applications." (2016).



Global Secondary Indexing
Partitioning By Term

-

~N

Partition | Partition Il
Key Color Key Color
T 12 . ] 104 Yellow
© SUBEE Implemented in
O 56 maint Blue
77 distrit «  DynamoDB Blue
 Oracle Datawarehouse
Term | » Riak (Search
) ( ) Match
S Yellow | * Cassandra (Search)
< [12,77]
Blue [56, 188, 192] A/} k\‘
[Targeted Query

WHERE color=blue

m Kleppmann, Martin. "Designing data-intensive
applications." (2016).



Query Processing Techniques
Summary

Local Secondary Indexing: Fast writes, scatter-gather
queries

Global Secondary Indexing: Slow or inconsistent writes,
fast queries

(Distributed) Query Planning: scarce in NoSQL systems
but increasing (e.g. left-outer equi-joins in MongoDB
and B-joins in RethinkDB)

Analytics Frameworks: fallback for missing query
capabilities
Materialized Views: similar to global indexing



How are the technigues from the NoSQL
toolbox used in actual data stores?




Outline

P Xtys

[

0B

NoSQL Foundations and
Motivation

The NoSQL Toolbox:
Common Techniques

NoSQL Systems &
Decision Guidance

Scalable Real-Time
Databases and Processing

Overview & Popularity
Core Systems:
* Dynamo
* BigTable
Riak
HBase
Cassandra
Redis
MongoDB



NoSQL Landscape

g
T\ W HYPERTABLE

[ e
W amazon HBASE ~E ?
Document Qsmazan DynamoDB) Google W

S==D Datastore Cassandra

‘ mongoDB

Wide Column

U i :
‘= ' 'RethinkDB Key-Value é redis

Couch QB
e SUCLOEES < I

Graph CoucHBase

» Neoa; “ Project Voldemort

>’ the graph database
4 InfiniteGraph




Popularity (Feb 2019)

H System Model 11.  Cassandra Wide column store

1 Oracle Relational DBMS 12.  MariaDB Relational DBMS
13. | Splunk Search engine

2. Mysat Relational DBMS 14. Teradata Search engine

3. | MSSAQL Server Relational DBMS 15.  Hive Relational

4, PostgreSQL Relational DBMS 16. | Solr Relational DBMS
17.  HBase Relational DBMS

5. MongoDB Document store 18.  FileMaker Relational

6.  DB2 Relational DBMS 19. | SAP Adaptive Server Relational DBMS

: - 20. SAP HANA Relational DBMS

7. Microsoft Access Relational 21, Amazon DynamoDB Multi-model

8. Redis Key-value store 22. Neodj Graph DB

9. ElasticSearch Search engine 23. | Couchbase Document store
24. Memcached Key-value store

10. | SQlite Relational DBMS 25. | SQL Azure Multi-model

Scoring: Google/Bing results, Google Trends, Stackoverflow, job
offers, LinkedIn

m http://db-engines.com/de/ranking



NoSQL: Still a Thing in 2019

o <L

Interesse im zeitlichen Verlauf

|4

Hinweis

02.03.2014 16.08.2015 29.01.2017

=]
-
I
a
=
I==]

m https://trends.google.com/trends/expl
ore?date=today%205-y&qg=nosq|




History

Google File System 2003

MapReduce 2004
CouchDB 2005

BigTable 2006
Dynamo MongoDB . 2007

V/ Cassandra 2008

Redls 2009
2010

Rlak

CouchBase ,
MegaStore 2011
RethinkDB HyperDeX o — 2012
2013
2014

Espresso

2015



NoSQL foundations

BigTable (2006, Google) Coc )g[e

Consistent, Partition Tolerant
Wide-Column data model

Master-based, fault-tolerant, large clusters (1.000+ Nodes),
HBase, Cassandra, HyperTable, Accumolo

Dynamo (2007, Amazon) amazon

Available, Partition tolerant

Key-Value interface

Eventually Consistent, always writable, fault-tolerant
Riak, Cassandra, Voldemort, DynamoDB

m Chang, Fay, et al. "Bigtable: A distributed storage system
for structured data."

m DeCandia, Giuseppe, et al. "Dynamo: Amazon's highly
available key-value store."



Dynamo (ap)

Developed at Amazon (2007)
Sharding of data over a ring of nodes
Each node holds multiple partitions
Each partition replicated N times

o
8,0
5
\

o]

m DeCandia, Giuseppe, et al. ' Dynamo Amazon's
highly available key-value store."



Consistent Hashing

Naive approach: Hash-partitioning (e.g. in Memcache,
Redis Cluster)

@ _«




Consistent Hashing

Solution: Consistent Hashing — mapping of data to
nodes is stable under topology changes

2160 0

\/

/- hash(key)
B

c | position = hash(ip)




Consistent Hashing

Extension: Virtual Nodes for Load Balancing

2160 0

C takes over
one third of

B takes over
two thirds of



Reading

ParametersR, W, N

An arbitrary node acts as a coordinator
N: number of replicas

R: number of nodes that need to confirm a read
W: number of nodes that need to confirm a write

= 0 =2
nm 1
RN W



Quorums

N (Replicas), W (Write Acks), R (Read Acks)
R + W < N = No guarantee
R + W > N = newest version included

' A B 'C D 1A B c , D !
SIS [ : : I L
=== - ---=------ , , l—— =L
| E F G H 'E F G !
! I D e e e e e e e e o
I b ST mmmmmmmmmmmmmmm | I
'] ] K L |
[

| T ] K L !
______________________ ] |__ e,
N=12,R=3,W =10 N=12,R=7,W=6

Write-Quorum



Writing

W Servers have to acknowledge

= 0 =2

RN W



Hinted Handoff

Next node in the ring may take over, until original node
is available again:

A

[~

= 0 =2
nm 1
RN W



Vector clocks

Dynamo uses Vector Clocks for versioning

m C. J. Fidge, Timestamps in message-passing systems
that preserve the partial ordering (1988)




Versioning and Consistency

R + W < N = no consistency guarantee
R + W > N = newest acked value included in reads
Vector Clocks used for versioning

Read Repair



Conflict Resolution

The application merges data when writing (Semantic
Reconciliation)




Merkle Trees: Anti-Entropy

Every Second: Contact random server and compare




Quorum

P(consistent) = 99.9%
nach 1.85 ms

LinkedIn (SSDs):
Typical Configurations:

Performance _ _ _
(Cassandra Default) N—3, R—]-; W=1
Quorum, fast _ _ _
Writing: N=3, R=3, W=1
Quorum, fast _ _ _
Reading N_3i R_]-; W=3

Trade-off (Riak _ _ _
Default) N=3, R=2, W=2

P. Bailis, PBS Talk: http://www.bailis.org/talks/twitter-pbs.pdf



R + W> N does not imply linearizability

Consider the following execution:

Replica 1 & -------}-------femmmmmee e T oo
N~

Replica 2 L (Y A o

Replica3 b ---------¥ed g N
N~

getx 2> 0

m Kleppmann, Martin. "Designing data-
intensive applications." (2016).



CRDTs

Convergent/Commutative Replicated Data Types

Goal: avoid manual conflict-resolution
Approach:

State-based — commutative, idempotent merge function
Operation-based — broadcasts of commutative upates

Example: State-based Grow-only-Set (G-Set)

aico iy 5, © 0 add(y)
—_— S = {x) _5: S, ={y} -—
S; =merge({x},{y}) * S, =merge({y},{x})
={x, ¥} = {x, ¥}
Node 1 Node 2

m Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek
Zawirski "Conflict-free Replicated Data Types"



. sriak
Riak (ap) Riak

Model:
. Key-Value
Open-Source Dynamo-Implementation canse.
Extends Dynamo: Apache 2
Written in:
Keys are grouped to Buckets Erm——

KV-pairs may have metadata and links

Map-Reduce support

Secondary Indices, Update Hooks, Solr Integration
Option for strongly consistent buckets (experimental)
Riak CS: S3-like file storage, Riak TS: time-series database

(] g N

v L 1 e—— Consistency Level: N, R, W, DW

o Q 2 . .

s % 5 amm- Storage Backend: Bit-Cask, Memory, LevelDB
(@] Data: KV-Pairs Bucket



Riak Data Types

Implemented as state-based CRDTs:

Data Type
Flags

Registers

Counters

Sets

Maps

Convergence rule

enable wins over disable

The most chronologically recent value wins, based
on timestamps

Implemented as a PN-Counter, so all increments
and decrements are eventually applied.

If an element is concurrently added and removed,
the add will win

If a field is concurrently added or updated and
removed, the add/update will win

m http://docs.basho.com/riak/kv/2.1.4/learn/concepts/crdts/



Hooks & Search

éiid
Hooks: § JS/Erlang Pre-Commit Hook
] \\
\\
Update/Delete/Create Sso
. >\}

Response

-
—\ s
/\/ L ’f
A —._ -

A £~ .
E JS/Erlang Post-Commit Hook

Riak Search: e

N

4

A
o (-

| [

e E Riak_search_kv_hook

- Term Dokument
Update/Delete/Create N

\’i database 3,4,1
) rabbit 2

/solr/mybucket/select?q=user:emil

Search Index



Riak Map-Reduce

—————————

gnosql dbs}
— i —E—» Map 45
c 1 1
] i i
_lé i —i—» Map —4 Reduce \494
~ | '~ Map

function(mapped) {
( ' var sum = 0;
function(v) { for(var i in mapped) {

POST /mapred

"model .
S var json = V.V, sum += i.count;
"stac; return [{count } 15} 1251
} . . >
) return [{count : 0}]; m
~ i —>  viap " J
i i
i i
i i
1 I
ol M
o| | e M Red o
9 ] —T ap eauce
(@] I 1
E i I
: | |\/|ap 49
1 1
oo 7

http://docs.basho.com/riak/latest/tutorials/querying/MapReduce/




Riak Map-Reduce

JavaScript/Erlang, stored/ad-hoc
Pattern: Chainable Reducers
Key-Filter: Narrow down input
Link Phase: Resolves links

—-

"key-filter" : [
["string to_int"],
["less _than", 100]

]

v

Map

"link" : {

}

"bucket":"nosql dbs"

>

Reduce | —

Same
Data Format



Riak Cloud Storage

Files

> Amazon S3 1IMB Chunks

API




Summary: Dynamo and Riak

Available and Partition-Tolerant
Consistent Hashing: hash-based distribution with stability
under topology changes (e.g. machine failures)

Parameters: N (Replicas), R (Read Acks), W (Write Acks)
N=3, R=W=1 - fast, potentially inconsistent

N=3, R=3, W=1 = slower reads, most recent object version contained

Vector Clocks: concurrent modification can be detected,
inconsistencies are healed by the application

API: Create, Read, Update, Delete (CRUD) on key-value pairs
Riak: Open-Source Implementation of the Dynamo paper



Dynamo and Riak

Classification

0 Sharding
O Replication

H Storage
. Management

'® Query
N Processing

Hash-

Sharding

. Update-

Logging in-Place
Global Local
Index Index

Consistent
Hashing
Async.
: Update
Replica-
. Anywhere
tion
Caching
Analytics



. &8 redis
Redis (ca) —

Model:
Remote Dictionary Server L
In-Memory Key-Value Store BSD
Asynchronous Master-Slave Replication R

Data model: rich data structures stored under key
Tunable persistence: logging and snapshots
Single-threaded event-loop design (similar to Node.js)
Optimistic batch transactions (Multi blocks)

Very high performance: >100k ops/sec per node
Redis Cluster adds sharding



Redis Architecture

Redis Codebase = 20K LOC

Client

Plain Text Protocol

Redis Server

hello

//\/j_“v
TCP Port l,') ﬁ .
6379 , {
One Process
Event Loop Thread /
Local < —
Filesystem - Periodic
Log [ AOF :I : ::c\(;;x Writes
RDB

Dump

RAM




Persistence

Default: ,Eventually Persistent”
AOF: Append Only File (*Commitlog)
RDB: Redis Database Snapshot

config set appendonly everysec

fsync() every second

AOF

RDB

Snapshot every 60s,
if > 1000 keys changec/

config set save 60 1000

o Local
| Filesystem

i

Log
Dump



Persistence

-
1. Resistence to client o
crashes ~
2. Resistence to DB process @fEI Tyfei Eei@ ___________
crashes § S Database | - [inMemory Data :
3. Resistence to hardware > G Process g [ Structures |

crashes with Write-Through

4. Resistence to hardware
crashes with Write-Back



Persistence: Redis vs an RDBMS

PostgreSQL: Redis:

> synchronous_commit on > appendfsync always

Latency > Disk Latency, Group Commits, Slow

> synchronous_commit off > appendfsync everysec

periodic fsync(), data loss limited

> fsync false > appendfysnc no
. . Data loss possible, corruption
Data corruption and losspossible P P
prevented

> pg_dump > save oder bgsave



Master-Slave Replication

> SLAVEOF 192.168.1.1 6379 l lSIave Offsets
< +0K

________ » Memory Backlog r--

Asynchronous
Replication -

-
-
-




Data structures

String, List, Set, Hash, Sorted Set

String web:index — "<html><head>..."

Set users:2:friends — {23, 76, 233, 11}

List users:2:inbox — [234, 3466, 86,55]

Hash users:2:settings —> Theme — "dark", cookies — "false"
Sorted Set top-posters —> 466 — "2",344 — "16"

Pub/Sub users:2:notifs — "{event: 'comment posted’, time : ..."



Data Structures

(Linked) Lists:

HPUSHX LPUSH : RPUSH
Only iflist‘\ LRANGE inbox 1 2
exists TS / A \

inbox — 234 ——— 3% I— 36 L 55
|

4 l :l LREM inbox © 3466 l l

LLEN |
LPOP LINDEX inbox 2 RPOP

. |

Blocks until element |
. |

arrives

BLPOP



Data Structures

Sets: / 23/10 2 28 325 64 70 «— user:5:friends
SINTER / // SINTERSTORE common_friends
i // user:2 friends user:5:friends
{53 / 1 SMEMBERS l
. 76 23 <« common_friends
user:2:friends —
233« SADD
4]
SCARD S
“, false

SREM SISMEMBER

SRANDMEMBER



Data Structures

Pu b/Sub users:2:notifs — "{event: 'comment posted’, time : ..."

é redis
PUBLISH user:2:notifs

"y k/////' SUBSCRIBE user:2:notifs

event: 'comment posted’,

time : .. \\\\\\Si

{

event: 'comment posted',
time : .

}




Example: Bloom filters
Compact Probabilistic Sets

Bit array of length m and k independent hash functions
insert(obj): add to set
contains(obj): might give a false positive

https://github.com/Bagend/
Orestes-Bloomfilter



Bloomfilters in Redis

Bitvectors in Redis: String + SETBIT, GETBIT, BITOP

public void add(byte[] value) { JedB:RewsCHmﬂﬁonmva]
for (int position : hash(value)) {
jedis.setbit(name, position, true)

3

}

}
SETBIT creates and resizes
automatically

public void contains(byte[] value) {
for (int position : hash(value))
if (!jedis.getbit(name, position))
return false;
return true;

}



Pipelining

If the Bloom filter uses 7 hashes: 7 roundtrips
Solution: Redis Pipelining

? Client ] ? Redis ]

SETBIT key 22 1 |
: i Y >
|
: SETBIT key 87 1 >
|
: |
| |
) |
i |
) |
) |
\ 4 v



Redis for distributed systems

Common Pattern: distributed system with shared state

in Redis

Example - Improve performance for legacy systems:

~ Slow Legg'cy
System

—_—_— e e e e - - - —

sh - [05 ]

k 7]

m_|[E0000]

= redis

Bits —{0|1]0of0

~N—_—_—— e — —

{ App Server

Bloomfilter lookup:
GETBIT, GETBIT...

Get Data
From Legacy System



https://github.com/Bagend/
Orestes-Bloomfilter

Redis Bloom filters
Open Source

O This repository Pull requests Issues Gist

L] Bagend / Orestes-Bloomfilter @ Unwatch~ 36 YUnstar 233  YFork 94
<> Code Issues 2 Pull requests 0 Projects 0 Wiki Pulse Graphs Settings

Library of different Bloom filters in Java with optional Redis-backing, counting and many hashing options. Edit

m Add topics

‘D 245 commits ¥ 1branch © 21 releases 42 6 contributors gfs MIT
Branch: master « New pull request Create new file = Upload files | Find file Clone or download ~
ﬂ fbuecklers [ci skip] new version commit: '1.2.2-SNAPSHOT". Latest commit basb332 8 days ago
B conf Implement sentinel test setup a month ago
Bl gradle/wrapper cleanup build 2 years ago
i sic better error handling and logging in the Redis PubSub Thread helper 8 days ago
[£ .gitignore ignore the idea folder a month ago
[E] CHANGELOG.md Update CHANGELOG.md 2 years ago
[Z) LICENSE Added Tutorial steps 4 years ago

[X) README.md Some Cleanups a month ago



Why is Redis so fast?

Pessimistic

are expensive

0
\ 14.2% Iaming

16.2% handssaded | NO Query
optimi ns | Parsing

\

34.6%

bufferx.anager

Data in RAM

----- useful work

Operations are
lock-free

Single-threading

o

Harizopoulos, Stavros, Madden, Stonebraker "OLTP through
the looking glass, and what we found there."



Optimistic Transactions

MULTI: Atomic Batch Execution

WATCH:

Only executed if
bother keys are
unchanged

Condition for MULTI Block

( WATCH users:2:followers, users:3:followers
MULTI

SMEMBERS users:2:followers ——> Queued

SMEMBERS users:3:followers ——> Queued
INCR transactions——> Queued

EXEC —> Bulk reply with 3 results



Lua Scripting

SCRIPT LOAD

Script Hash

EVALSHA $hash 1
Ilmylockll lllell

/

Redis Server

--lockscript, parameters: lock_key, lock_timeout :
local lock = redis.call('get’, KEYS[1])
if not lock then

return redis.call('setex’, KEYS[1], ARGV[1], "locked")
end

return false

\ /

Script Cache

Data

Ierusalimschy, Roberto. Programming in lua. 2006.




Redis Cluster
Native Sharding in Readis

Idea: Client-driven hash-based sharing (CRC32, ,hash slots®)

Asynchronous replication with failover (variant of Raft’s
leader election)

Consistency: not guaranteed, last failover wins
Availability: only on the majority partition
—>neither AP nor CP cull-Mesh

Cluster Bus
8192-16384

Redis Master —— Redis Slave
Client 0-8192 | >< |
Redis Master ——  Redis Slave
- No multi-key operations

- Pinning via key: {user1}.followers

m http://redis.io/topics/cluster-spec



Performance

Comparable to Memcache

> redis-benchmark -n 100000 -c 50

» 80000

s 60000

< 50000

“2 40000

ro

30000

o 20000

S

-

10000

0 I I I I I I I

Reques

Operation



Example Redis Use-Case: Twitter

Per User: one
materialized timeline in
Redis

Timeline = List
Key: User ID

RPUSHX user_id tweet

What's napgening?

a s =

Write API

S

1
=

&8

>150 million users
~300k timeline querys/s

m http://www.infog.com/presentations/Real-Time-Delivery-Twitter



Classification: Redis

Techniques

0 Sharding

Replication

Storage
Management

Query
Processing

Range- Hash- Entity-Group Consistent Shared
Sharding Sharding Sharding Hashing Disk
Trans- Sync. Async. Pri Uod
action Replica- Replica- ::lmary A P f\te
Protocol tion tion opy nywhere
L - L - L. L N
: Update- : In- Append-Only
Logging in-Place Caching Memory Storage
L - L. - L - L - L.
Global Local Query Analvti Materialized
Index Index Planning nalytes Views




Google BigTable (cp)

Published by Google in 2006
Original purpose: storing the Google search index

A Bigtable is a sparse,
distributed, persistent
multidimensional sorted map.

Data model also used in: HBase, Cassandra, HyperTable,
Accumulo

m Chang, Fay, et al. "Bigtable: A distributed storage system
for structured data."



Wide-Column Data Modelling

Storage of crawled web-sites (,Webtable®):

------------------------------

[ Column-Family:
contents

1. Dimension: i | 2. Dimension:
Row Key i 1 CF:Column
1 i [/ L [T 1

————————————————————————————————————————————————————

Column-Family:
anchor

t; 3. Dimension:
ES Timestamp

com.cnn.www 1> content : "<html>..." cnnsi.com : "CNN" my.look.ca : "CNN.com"

Sparse I

B L L e L L T T e e e s

4
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

————————————————————————————————————————————————————————————————————————————————



Range-based Sharding

Tablet: Range partition of ordered records

Rows Tablet Server 1 Tablet Server 2 Tablet Server 3
A-C p------ > A-C
C-F » C-F
F-I Eol
I-M f--eeee- > I-M
M-T o M-T
e T-Z
M Controls Ranges, Splits, Rebalancing

Master



Architecture

ACLs, Garbage P I Master Lock, Root __—
Collection, = jlé Metadata Tablet
=7

Rebalancing

e "Tea
e Cea
- L
.. .a
ce
e Cea
- e
- oo
- -
-
e
Sa

Stores Ranges,
Answers client
requests

»

Tablet Server Tablet Server Tablet Server

N
N

Stores data and
SSTables

commit log
GFS

- |Commit




Storage: Sorted-String Tables

Goal: Append-Only 10 when writing (no disk seeks)
Achieved through: Log-Structured Merge Trees

Writes go to an in-memory memtable that is periodically
persisted as an SSTable as well as a commit log

Reads query memtable and all SSTables

/ Row-Key
Key Block _/\:'B|0Ck (eg 64KB)

Key

Block

Key

Block

Key

Value

Key

Value

Key

Block Index

Variable Length

Sorted String Table



Storage: Optimization

Writes: In-Memory in Memtable
SSTable disk access optimized by Bloom filters

\ — Write(x)
=l — Read(x) —F\f Memtable
Client
Bloom
filters
Main Memory Hit |
______________________ Periodic
: Flush
Disk
SSTables
Periodic
Compaction




T 1\
o

HBASE

Apache HBase (cp)

Model:
Wide-Column

License:

Open-Source Implementation of BigTable
Hadoop-Integration Apache 2

Written in:
Data source for Map-Reduce

Uses Zookeeper and HDFS
Data modelling challenges: key design, tall vs wide
Row Key: only access key (no indices) = key design important

Tall: good for scans
Wide: good for gets, consistent (single-row atomaicity)

No typing: application handles serialization
Interface: REST, Avro, Thrift

Java




HBase Storage

Logical to physical mapping:

In Value \Key Design — where to store data:
r2:cf2:c2:tl:<value>
In Key —r2-<value>:cf2:c2:t1:_

In Column  — r2:cf2:c2<value>:tl:_

Key | cfl:cl | cfl:c2 | cf2:cl | cf2:c2

rl II II
r2 [ ] B
r3 |ii
r4 II
r5 iil II

:<value>

:<value>
:<value>
:<value>

:<value>
HFile cf2

:<value>

:<value>

:<value>

:<value>

:<value>
HFile cfl

m George, Lars. HBase: the definitive guide. 2011.



Example: Facebook Insights

EXtraCtion Dally Active Users Daily New Users  Total installed Users
every30min  J_Jg)e [t
> y - W\/\‘W—o—\
HBASE
MD5(Reversed Domain) + Reversed Domain + URL-ID Row Key
6PM 6PM 01.01 01.01 Total Male
Total Male Total Male
10 7 100 65K AtomicHBase || 567
LCounter )
I
g N A /
N ~N N
CF:Daily CF:Monthly CF:All

TTL — automatic deletion of
old rows

m Lars George: “Advanced
HBase Schema Design”



Schema Design

Tall vs Wide Rows:

Tall: good for Scans
Wide: good for Gets

Hotspots: Sequential Keys (z.B. Timestamp) dangerous

Performance

Sequential

Key

Random

George, Lars. HBase: the definitive guide. 2011.




Schema: Messages

User ID Column Timestamp Message

12345 data 5fc38314-e290-ae5da5fc375d 1307097848 "Hi Lars, ..."

12345 data 725aae5f-d72e-f90f3f070419 1307099848 "Welcome, and ..."

12345 data cc6775b3-f249-c6dd2b1a7467 1307101848 "To Whom It ..."

12345 data dcbeed495-6d5e-6ed48124632c 1307103848 "Hi, how are ..."
VS

ID:User+Message Timestamp Message

12345-5fc38314-e290-ae5da5fc375d data : 1307097848 "Hi Lars, ..."

12345-725aae5f-d72e-f90f3f070419 data : 1307099848 "Welcome, and ..."

12345-cc6775b3-f249-c6dd2b1a7467 data : 1307101848 "To Whom It ..."

12345-dcbee495-6d5e-6ed48124632c data : 1307103848 "Hi, how are ..."

Wide:
Atomicity
Scan over Inbox: Get

Tall:
Fast Message Access
Scan over Inbox: Partial Key Scan

http://2013.nosql-matters.org/cgn/wp-content/uploads/2013/05/
HBase-Schema-Design-NoSQL-Matters-April-2013.pdf




APIl: CRUD + Scan

Setup Cloud Cluster:

> elastic-mapreduce --create -- > whirr launch-cluster --config
hbase --num-instances 2 --instance- hbase.properties
type ml.large \—

' Login, cluster size, etc.

HTable table = ...

Get get = new Get("my-row");
get.addColumn(Bytes.toBytes("“my-cf"), Bytes.toBytes("my-col™));
Result result = table.get(get);

table.delete(new Delete("my-row"));

Scan scan = new Scan();

scan.setStartRow( Bytes.toBytes("'my-row-0"));

scan.setStopRow( Bytes.toBytes("my-row-181"));
ResultScanner scanner = table.getScanner(scan)
for(Result result : scanner) { }



APIl: Features

Row Locks (MVCC): table.lockRow(), unlockRow()
Problem: Timeouts, Deadlocks, Ressources

Conditional Updates: checkAndPut(), checkAndDelete()

CoProcessors - registriered Java-Classes for:

Observers (preput, postGet, etc.)
Endpoints (Stored Procedures)

HBase can be a Hadoop Source:

TableMapReduceUtil.initTableMapperJob(
tableName, //Table
scan, //Data input as a Scan
MyMapper.class, ... //usually a TableMapper<Text,Text> );



Summary: BigTable, HBase

Data model: (rowkey, cf: column, timestamp) —
value

API: CRUD + Scan(start-key, end-key)

Uses distributed file system (GFS/HDFS)

Storage structure: Memtable (in-memory data structure)
+ SSTable (persistent; append-only-10)

Schema design: only primary key access = implicit
schema (key design) needs to be carefully planned

HBase: very literal open-source BigTable implementation



Classification: HBase
Techniques

. Range-
o AR Sharding

Sync.

Replication Replica-
tion

H Storage
s Management

Logging

'® Query
N Processing

Caching

Primary
Copy

Append-Only
Storage



Cassandra

Apache Cassandra (ap)

Model:
Wide-Column

Published 2007 by Facebook case

Idea: Apache 2
BigTable‘s wide-column data model —
Dynamo ring for replication and sharding

Cassandra Query Language (CQL): SQL-like query- and

DDL-language

Compound indices: partition key (shard key) + clustering

key (ordered per partition key) = Limited range queries

Java




Architecture

Stateful
Communication J

-

Replication,

Gossip, etc.

Cassandra Node

set_keyspace() TCP Cluster
get slice() Thrift RPC Storage Messages
or CQL Proxy — >

e
Column - —[ Stores Rows
Family Store Row Cache j

Stores SSTables Local ("I e
and Commit Log Filesystem | & |--=={_MemTable )| Key Cache 1

~\

Stores Primary Key Index
(Seek Position)

MD5(ke
Hashing: (key)

Random Partitioner

Order Preservering
Partitioner

T~

Snitch: Rack, Datacenter,
EC2 Region Information



Consistency

No Vector Clocks but Last-Write-Wins
=>» Clock synchronisation required
No Versionierung that keeps old cells

Write Read

Any -

One One

Two Two

Quorum Quorum

Local_Quorum / Each_Quorum Local_Quorum / Each_Quorum

All All



Consistency

Coordinator chooses newest version and triggers Read
Repair
Downside: upon conflicts, changes are lost

C,:writes B C,: writes C C;:reads C
Write(One) W Read(All)
7 7 7

Version C Version C Version C



Storage Layer

Uses BigTables Column Family Format

KeySpace: music

Column Family: songs [

Comparator determines

p
J Type validated by

order . Validation Class UTFType
4 N\ 4 ™\ \V/ N\ Ve /
album: New artist: Antonin
2831... itle:
L LGP J{ S AE e ) [World Symphony) L Dvorak
[ Y ( title: Jailh tist: Elvi
144052... itle: Jailhouse artist: Elvis
. L Rock Presley

Server

AN

Row Key: Mapping to ]

Sparse

http://www.datastax.com/dev/blog/cql3-for-cassandra-experts




CQL Example: Compound keys

Enables Scans despite Random Partitioner

CREATE TABLE playlists ( SELECT * FROM playlists
id uuid, WHERE id = 23423

song_order int, ORDER BY song _order DESC

song_id uuid, ... LIMIT 56;
PRIMARY KEY (id, song order)

sorted per node

)
‘ l Partition Key I
id song_order song_id artist

23423 1 64563 Elvis
23423 2 f9291 Elvis

Clustering Columns: ]




Other Features

Distributed Counters — prevent update anomalies
Full-text Search (Solr) in Commercial Version
Column TTL — automatic garbage collection

Secondary indices: hidden table with mapping

— queries with simple equality condition
Lightweight Transactions: linearizable updates through a
Paxos-like protocol

INSERT INTO USERS (login, email, name, login_count)
values ('jbellis', 'jbellis@datastax.com', 'Jonathan Ellis', 1)
IF NOT EXISTS



Classification: Cassandra

Techniques

0 Sharding
O Replication

H Storage
. Management

'® Query
N Processing

Hash-
Sharding
Async.
Replica-
tion

Logging Caching
Global Local
Index Index

Consistent

Hashing

Update
Anywhere

Append-Only
Storage

Materialized
Views



. mongoDB

MongoDB (cp)

Model:
~ . Document
From humongous = gigantic oo
Schema-free document database with GNU AGPL 3.0
. Written in:
tunable consistency Cos

Allows complex queries and indexing
Sharding (either range- or hash-based)
Replication (either synchronous or asynchronous)

Storage Management:

Write-ahead logging for redos (journaling)

Storage Engines: memory-mapped files, in-memory, Log-
structured merge trees (WiredTiger), ...



Basics

> mongod &

> mongo imdb

MongoDB shell version: 2.4.3
connecting to: imdb

> show collections

movies Properties

tweets P

> db.movies.f AdOne({title : "Iron Man 3"})
{

title : "Iron Man 3",
year : 2013 ,
genre : [
"Action",
"Adventure",
"Sci -Fi"],
actors : [
"Downey Jr., Robert",
"Paltrow , Gwyneth",]

Arrays, Nesting allowed ]




Data Modelling

{
" id" : ObjectId("51a5d316d70beffe74ecc940")
title : "Iron Man 3",
year : 2013, 00 .
: Denormalisation instead
rating : 7.6, n £ ioi
director: "Shane Block", r otk
"Adventure", n SRR Nesting replaces 1:n
"Sci -Fi"], and 1:1 relations
actors : ["Downey IJr., Ro% ‘
"Paltrow , Gwyneth"],
tweets : [ { ° text Scht_emafreeness.
"user" : "Franz Kafka", ordinates Attributes per document
"text" : "#nowwatching Iron Man 3",
REDmEE e, __ Unit of atomicity:
date" : ISODate("2013-05-29T13:15:51Z") document
}]
}

Movie Document Principles




Sharding und Replication

Sharding:
-Sharding attribute

~~~~~ Config i Master \
iy AL T -Load-Balancing
Client mongos ~ ~ ~| -can trigger rebalancing of
= | / "~ chunks (64MB) and splitting
=1 T~ %
Client Master ~
|

Controls Write Concern:
Unacknowledged, Acknowledged,
Journaled, Replica Acknowledged

-Hash vs. range sharding .‘

-Receives all writes

-Replicates asynchronously




MongoDB Example App

Twitter s T TR
Firehose “The Movie mApp

@Johnny: Watching
Game of Thrones

I @Jim: Star Trek =
rocks.

REST API (Jetty)

v ( Tweets ] @ Browser
G N
saveTweet () (:2)/( Movies )‘ GET ‘ T
l’ getTaggedTweets() [ | JSON‘EJ-)& P )
Tweets _: ) getByGenre() ( Streaming ) @ 4 . ~
~— 1 searchByPrefix() - Searching
MongoDB ( GridFS ) ElRRE \- <
MovieService ( Search ) Queries
W,

Server Client



MongoDB by Example

The Movie mApp

Unveiling the geographic patterns underlying tweets about movies.

DBObject query = new BasicDBObject("tweets.coordinates"”,

new BasicDBObject("$exists"”, true));

"1 db.getCollection("movies").find(query);
Geot Or in JavaScript: .
db.movies.find({tweets.coordinates : { "$exists" : 1}})
Note:
~~1 Overhead caused by large results — projection
(€

vIOVIE, Fa
User: david hourigan i Peterbur
Tweet: That 70's show, American dad ¥amily guy, courage the cowardly dog, how | met your ) SRz entypr
mother.. This is too good

===

‘_
-l
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B Movie mApp - DIS Task

DIS Website MongoDB Docs MongoDB Cheat Sheets MongoDB Java API MongoDB Tutorials

The Movie mApp

Unveiling the geographic patterns underlying tweets about movies.

| Show Mongo at http://127.0.0.1:28017/ .

"1 db.tweets.find({coordinates : {"$exists" : 1}}, \ 4/

Geot {text:1, movie:1, "user.name":1l, coordinates:1}) Eif
.sort({id:-1})
Note:
- ~1 Projected attributes, ordered by insertion date i
<
v T @

Sanki-Peterbur

User: david hourigan
~ (CankT-TeTepdypr

Tweet: That 70's show, American dad amily guy, courage the cowardly dog, how | met your
mother.. Thisis too good

1=
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Map Search Queries Tweets Discussion

Search for Movie and Its Tweets Stream Tweets in Background
Movie Incep Keywords (comma- Comma-separated Movie
separated) Names

Inception: Motion Comics

Inception: 4Movie Premiere Special .

Total Tweets to Stream 100

[J Only geotagged tweets

db.movies.ensureIndex({title : 1})
db.movies.find({title : /"Incep/}).limit(10)

Title

Poster

Index usage:
db.movies.find({title : /AIncep/}).explain().millis =0
db.movies.find({title : /AIncep/i}).explain().millis = 340

Datei auswahlen | Keine ausgewahit



Title

Poster

Comment

Year
Rating
Votes
Runtime
Genre

Plot

Inception

@TRIXIA : #nowwatching Inception

" Import Poster from IMDB

@F & KiE. :So,|finally finished Vampire Knight,
this beautiful manga | followed since its inception. It
ends beautifully and oddly | like Kaname.

db.movies.update({ _id: id), {"$set" : {"comment" : c}})
or:

db.movies.save(changed movie);

2010

8.8

542921

148 minutes
Action,Adventure,Sci-Fi,Thriller

Dom Cobb is a skilled thief, the absolute best in the
dangerous art of extraction, stealing valuable secrets
from deep within the subconscious during the dream
state, when the mind is at its most vulnerable. Cobb's
rare ability has made him a coveted player in this



Title Inception
@TRIXIA : #nowwatching Inception

Poster
@F & K. :So,lfinally finished Vampire Knight,
this beautiful manga | followed since its inception. It
ends beautifully and oddly | like Kaname.
@Lizzie Hodges: What if Stacy's mom was Jessie's
girlfriend and her number was 867-53097 #inception

Comment

....................... = new GridFs(db);
fs.createFile(inputStream).save();
Year
Rating

GridFS 256 KB | Mongo

Votes —
API Blocks DB
Runtime
Genre
Plot Dom Cobb is a skilled thief, the absolute best in the

dangerous art of extraction, stealing valuable secrets
from deep within the subconscious during the dream
state, when the mind is at its most vulnerable. Cobb's
rare ability has made him a coveted player in this



"""""""""" W T TR
o
Helsinki
o

7mﬁhqlm

Position:
51.54155217692421,10.406249463558197,1000

i

Map  Search Queries = Tweets

Query Tweets

Query Get Tweets Near: lat,Ing.radius-in-km

ol /A§r
a
b

?

) L

[+]
———

g

omania
(Romania) {

o
i~ Bucuresti

Bay of
Bis{:uy

Parameter | 51.54155217692421,10.406249463558197,1000

) —fB'hnra A
;f/__.(aumﬁ:')
S R S SR

Result Limit 10

EO
E

User Tweet Created at Coordinates

MitchellyMonica db.tweets.ensureIndex({coordinates : "2dsphere"})
db.tweets.find({"$near" : {"$geometry"” : .. }})

J.Z.
Geospatial Queries:
Party Hardy * Distance
* Intersection
nadine stachowiak * Inclusion

2013

PAIRSonnalites | DE ES-News : http://t.co/WhBmNr6OM2: In vielen Staaten Afrikas gibt es Wed May 29 13.467578132.52.5913198



Map Search Queries = Tweets Discussion

Query Tweets

Query Indexed Fulltext Search on Tweets v a
Parameter  StAr trek

Result Limit 100

Show 29 ¥ search results per page Filter search results:

User Tweet Created at Coordinates v

manwonman db.tweets.runCommand( "text", { search: "StAr trek" } )

Mia Clrss Hrnndz

Full-text Search:

. * Tokenization, Stop Words
Stemming
Stefany Ezra Elvina Scoring
Vanessa Yung Star Trek into Darkness[ Wed May 29 -2.986771,53.404051
19:21:06 +0000
2013
tam wilson Finally getting to see Star Trek! (at @DCADundee Contemporary Arts ~ Wed May 29 -2.97489166,56.45753477

for Star Trek Into Darkness 3D) http://t.co/00jg4KMBL5 18:48:56 +0000



Analytic Capabilities

Aggregation Pipeline Framework:

> *@ Wy DRI s —ame——

I
l \
\

| \
Match: Selection Prolectlon Unwind: Skipand  Grouping, e.g.
by query elimination of Limit { __id : "Sauthor",
nesting docsPerAuthor : {Ssum: 1},

viewsPerAuthor : { Ssum : "Sviews" } }});

Alternative: JavaScript MapReduce



Sha rd | ng In the optimal case only one

shard asked per query, else:
Scatter-and-gather

Range-based: A

-~ J|IChunk | iChunk 2 ~_J|IChunk 3 {:‘Chunk 4
Key Space for
- ﬁ"'"‘ ."1 .""1 -
{ % minkey } {75}V {=:-74} {x: 24 ) {=: 25} {175 ¥y 176} { = maxKey }

Hash-based:

5] 2 Even distribution,
v no locality
L /
Y v
Chunk | Chunk 2 Chunk 3 Chunk 4
/—N-./\——-\/—N._/\———V-——-__./\ — ___/\_—_\
- - -} - -} - -}

docs.mongodb.org/manual/core/sharding-introduction/




Sharding

Split chunks that are
too large

Splitting:

Mongos Load Balancer
/ triggers rebalancing

docs.mongodb.org/manual/core/sharding-introduction/




Classification: MongoDB
Techniques
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Copy
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Memory Storage
Analytics



m» elasticsearch
A 4

Elasticsearch (cp)

Model:

Search Engine

Schema-free JSON store oo

Allows complex queries, full-text search, Elastic/Apache 2.0
. Written in:
aggregation, facets,...

Java

Local indexing
Hash-based sharding, but custom routing available
Synchronous replication

Storage Management:

Write-ahead logging
Lucene for local data storage



Classification: Elasticsearch

Techniques
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H Storage
. Management

'® Query
N Processing
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Primary
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Other Systems
Graph databases

Neodj (ACID, replicated, Query-language)

HypergraphDB (directed Hypergraph, BerkleyDB-based)
Titan (distributed, Cassandra-based)

ArangoDB, OrientDB (, multi-model”)

SparkleDB (RDF-Store, SPARQL)

InfinityDB (embeddable)

InfiniteGraph (distributed, low-level API, Objectivity-based)



Other Systems

Key-Value Stores
Aerospike (SSD-optimized)
Voldemort (Dynamo-style)
Memcache (in-memory cache)
LevelDB (embeddable, LSM-based)
RocksDB (LevelDB-Fork with Transactions and Column Families)
HyperDex (Searchable, Hyperspace-Hashing, Transactions)
Oracle NoSQL database (distributed frontend for BerkleyDB)
HazelCast (in-memory data-grid based on Java Collections)
FoundationDB (ACID through Paxos)



Other Systems

Document Stores

CouchDB (Multi-Master, lazy synchronization)

CouchBase (distributed Memcache, N1QL~SQL, MR-Views)
RavenDB (single node, S| transactions)

RethinkDB (distributed CP, MVVCC, joins, aggregates, real-time)
MarkLogic (XML, distributed 2PC-ACID)

ElasticSearch (full-text search, scalable, unclear consistency)

Solr (full-text search)
Azure DocumentDB (cloud-only, ACID, WAS-based)



Other Systems

Wide-Column Stores

Accumolo (BigTable-style, cell-level security)

HyperTable (BigTable-style, written in C++)



Other Systems

NewSQL Systems
CockroachDB (Spanner-like, SQL, no joins, transactions)
Crate (ElasticSearch-based, SQL, no transaction guarantees)
VoltDB (HStore, ACID, in-memory, uses stored procedures)
Calvin (log- & Paxos-based ACID transactions)
FaunaDB (based on Calvin design, by Twitter engineers)
Google F1 (based on Spanner, SQL)
Google Cloud Spanner (Improved F1 as a Service)
Microsoft Cloud SQL Server (distributed CP, MSSQL-comp.)

MySQL Cluster, Galera Cluster, Percona XtraDB Cluster
(distributed storage engine for MySQL)



Summary e

HDFS and Hadoop: Map-Reduce platform for batch
analytics

Spark, Kafka, Storm: In-Memory & Real-Time Analytics
Dynamo and Riak: KV-store with consistent hashing
Redis: replicated, in-memory KV-store

BigTable, HBase, Cassandra: wide-column stores
MongoDB: sharded and replicated document store



Open Research Questions
For Scalable Data Management

Service-Level Agreements
How can SLAs be guaranteed in a virtualized, multi-tenant
cloud environment?
Consistency
Which consistency guarantees can be provided in a geo-
replicated system without sacrificing availability?
Performance & Latency
How can a database deliver low latency in face of distributed
storage and application tiers?
Transactions
Can ACID transactions be aligned with NoSQL and scalability?



Distributed Transactions

ACID and Serializability

Definition: A transaction is a sequence of operations transforming
the database from one consistent state to another.

Atomicity
Consistency
Isolation

Durability

Isolation Levels:

1. Serializability
Snapshot Isolation
Read-Committed
Read-Atomic

Lnogm B



Distributed Transactions

General PrOCESSIng WCO/ is not available ]

Commit Protocol

Needs to ensure globally
Strong Consistency —

correct isolation
/ needed by Concurrency

Concurrency Control Concurrency Control Con_Control

Replication Replication Replication

=EE EEE EEE

Replicas Replicas Replicas

Shard Shard Shard



Distributed Transactions
In NoSQL Systems — An Overview

System Concurrency Granularity Commit Protocol
Control

Megastore Entity Group Local

G-Store OCC SR Entity Group Local

ElasTras PCC SR Entity Group Local

Cloud SQL Server  PCC SR Entity Group Local

Spanner / F1 PCC/ OCC SR/ SI Multi-Shard 2PC

Percolator OCC SI Multi-Shard 2PC

MDCC OCC RC Multi-Shard Custom — 2PC like
CloudTPS TO SR Multi-Shard 2PC

Cherry Garcia OCC SI Multi-Shard Client Coordinated
Omid MVCC SI Multi-Shard Local

FaRMuville OCC SR Multi-Shard Local
H-Store/VoltDB Deterministic CC SR Multi-Shard 2PC

Calvin Deterministic CC SR Multi-Shard Custom

RAMP Custom Read-Atomic  Multi-Shard Custom



Distributed Transactions
Megastore — Synchronous Wide-Area Replication

) 5 Paxos-h
Spanner Percolator m
|t|

|dea:

e Auto-sharded Entity Groups

e Paxos-replication per shard

Transactions:

* Multi-shard transactions

e Slusing TrueTime APl (GPAand  .____
atomic clocks)

* SR based on 2PLand 2PC

e Core of F1 powering ad business

|dea:
* Indexing and transactions based on
optn BigTable
Implementation:
* Metadata columns to coordinate
. transactions
"« Client-coordinated 2PC
* Used for search index (not OLTP)

m J. Corbett et al. "Spanner: Google’s globally distributed Peng, ngel, gnd F.ran.I;Dak(Jjek. Largg-scale Icr;cremental
deiabase. b TOES 2013 Pro;gssmg Using Distributed Transactions an
Notifications." OSDI 2010.
URL i - LUCOTrCUTTIITITT Prutucur,
I

optimistic concurrency
.. Root Table Child Table / control

____________________________________

P |



Distributed Transactions
MDCC — Multi Datacenter Concurrency Control

Properties: Paxos Instance }

@ Read Committed Isolation

@ Geo Replication
}o Optimistic Commit

Replicas
V>V Record-Master
(v)
Tl={v—> V/
u->u‘}
5 u-=>u’ 5

App-Server )
(Coordinator) Record-Master Repllcas

(u)




Distributed Transactions
RAMP — Read Atomic Multi Partition Transactions

Fractured Read

Properties:
@Y Read Atomic Isolation r(x) — rly) — wix) W(y)\A
1 L
Synch tion Ind d
%J Synchronization Independence 0 )

e Partition Independence

time

}o Guaranteed Commit

1

read objecti
3 :
load other versmi

2  validate



Distributed Transactions in the Cloud
The Latency Problem

Interactive Transactions:

Optimistic Concurrency Control




Optimistic Concurrency Control
The Abort Rate Problem

Conflict Rate

0 20 40 60 80 100 120 140

#QObjects

e 10.000 objects
e 20 writes per second

* 95% reads



Optimistic Concurrency Control

The Abort Rate Problem

900

800

700 -
" 600 -
.E 500 L
GE) 400
i= 300

200
100
0

0 50 40 6 80

#Objects

100

120

140

* 10.000 objects
e 20 writes per second

* 95% reads
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Transaction Duration with Retries in s

Problem of Optimistic Transactions
Abort Rates Depend on Latency

100 [ e
[ ; : [
sl 150 ms : :100,ms 50ms i
L y I L ,
L ) ,; l- b
60 - I I.’ Hoe 1
[ : / / | Transaction Abort
N ; /7 l/ ]
40 | e ‘ X fresseeene Rates Increase
A yd | Exponentially with
201 | N s S g S Latency
I i SRl BT Lo 10 ms
IR EL i et L Lbluiri e oy
° 0 20 40 60 80 100 120 140

Accessed Objects n



Distributed Cache-Aware Transaction
Scalable ACID Transactions

1. Cache Sketch: staleness barrier at transaction begin
2. Shorter duration through cached reads
3. Optimistic commit on top of NoSQL systems

Begin Transaction

Client

Buffer 4

"Cache Sketch
Cache

M Cache

j b Cache

Commit: read-set and updates

Orestes Server

Orestes Server

Committed OR aborted + stale objects

y Orestes Server |«
J Writes

Read all

=3
DB\

1

o

Mutual Exclusion
\4

Coordinator



Distributed Cache-Aware Transaction
Speed Evaluation

Timeins
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800 |-

700
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9)]
o
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S
o
o

w
o
o

200

100

e Caching | 5
m m NoCaching |~ ---------------------------- -----------------------

— Exponential Fit

50 100 150
Number of elements

15x%

Faster Transactions

7%

More Objects Before
Exceeding 2 Seconds



Selected Research Challanges

Encrypted Databases

Example: CryptDB

DBaaS Architecture: hi:
Idea: Only decrypt as much . gnerypted with CryptDB 77T
T T oToToTromoomomomomomommmmmmt e Multi-Tenancy through live
SQL-Proxy migration

* Workload-aware partitioning
(graph-based)

= ====x

Encrypts and decrypts,

[ C. Curino, et al. "Relational cloud: A database-as-a-service
far tha rland “ CIDR 2N11

 Early approach
 Not adopted in practice, yet

Dream solution:
Full Homomorphic Encryption




Research Challanges

Transactions and Scalable Consistenci
Consisten Google i i pats m
|dea: !

Dynamo Eventual « Consistent multi-data center replication with
o SQL and ACID transaction

Timeline pe | mnlementation:

COPS Causality Hierarchical schgma (Protobuf)

* Spanner + Indexing + Lazy Schema Updates

e Optimistic and Pessimistic Transactions

Yahoo PNuts

MySQL (async) Serializable

Currently very few NoSQL DBs implement
consistent Multi-DC replication




Selected Research Challanges

NoSQL Benchmarking

YCSB (Yahoo Cloud Serving Benchmark)

Workload Operation Mix
A — Update Heavy Read: 50%

Update: 50%

B — Read Heavy Read: 95%

Update: 5%

C —Read Only Read: 100%
D — Read Latest Read: 95%

Insert: 5%

E —Short Ranges  Scan: 95%

Insert: 5%

Read()
Distribution Example
Zipfian Session Store
Zipfian Photo Tagging
Zipfian User Profile Cache
Latest User Status Updates
Zipfian/ Threaded Conversations
Uniform

3.

Popularity Distribution



Selected Research Challanges

NoSQL Benchmarking
N .

III . | :
7T\ * New workload: Transactional I,'.I{
e Clients coordinate through Bank Account
Zookeeper e Simple anomaly detection for
* Simple Read-After-Write Checks Lost Updates
* Evaluation: HBase & Accumulo  +— « No comparison of systems
Y J—
S. Patil, M. Polte, et al., Ycsb++: benchmarking and * .
performance debugging advanced features in scalable A. Dey et al. “YCSB+T: Benchmarking Web-Scale
table stores”, SOCC 2011 Transactional Databases”, CloudDB 2014
2 A |
Weaknesses: |
. o [ J
« Single client can be a No Transaction Support
bottleneck

No specific application

* Noconsistency & > CloudStone, CARE, TPC
availability measurement e EnED



How can the choices for an appro-
priate system be narrowed down?



NoSQL Decision Tree

Access |

Fast Looku ps Complex Queries

H Unbounded HDD-Size I Unbounded
0 @
ACID Availability  Ad-hoc Analytics

v I !

RA

Purpose:

Application Architects: narrowing down the potential
system candidates based on requirements

Database Vendors/Researchers: clear communication and
design of system trade-offs




System Properties
According to the NoSQL Toolbox

For fine-grained system selection:

Functional Requirements

(7,]
c g
0 =
v T =
2 3 ©
o c c
3 u = -
o = % " <
3 5 5 £ E
3 < o 2 (7]
Mongo X X X
Redis X X X
HBase X X X
Riak
Cassandra X X X

MySQL X X X X X

> Filter Query
< Full-Text Search

< Analytics

X X X X



System Properties

According to the NoSQL Toolbox

For fine-grained system selection:

Non-functional Requirements

Ajiqeing

Aijiqejieay ayum

Ajige|ieny peay

indysnoayl a3

Adudje peay

Aduajeq 93

Aduajsisuo)

Aydnse|3

AMjiqe|eds peay

Avjige|eas ayum

Ajiqejeas eyeq

X

Mongo
Redis
HBase
Riak

X

Cassandra

MySQL



According to the NoSQL Toolbox
For fine-grained system selection:

System Properties

SMII/ pazijeldle|A
yiomauweu4 sonhjeuy
Suiuue|d Asanp
Suixapuj |e207
3uixapuj jeqo|9
98e1015 AjJup-puaddy
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3uiyoe)
9Je|d-ul-a3epdn
3ui18801

a19ymAuy arepdn

Techniques

Ado) Asewinnd
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X
X

Mongo
Redis
HBase
Riak
Cassandra
MySQL
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Designing
Data-Intensive
Applications

THE BIG IDEAS BEHIND RELIABLE, SCALAB!
AND MAINTAINABLE SYSTEMS

Martin Kleppmann

Low Latency for Cloud Data Management

Dissertation with the aim of achieving a doctoral degree at the
Faculty of Mathematics, Informatics, and Natural Sciences

Subminted at the University of Hamburg
by Felix Gesserr, 2018

Second Edition

Seven Databases
in Seven Weeks

A Guide to Modern
Databases and the
NoSQL Movement

Luc Perkins
with Eric Redmond and Jim R. Wilson

Series edilor: Bruce A. Tate
Development edltor: Jacquelyn Carter

Lena Wiese

ADVANCED DATA
MANAGEMEN

FORBAL, NOSGL, CLOUD AND DISTRIBUTED DATABASES,




Future Work o

Online Collaborative Decision Support

Select Requirements in Web GUI:

D Read Scalability |\/| Conditional Writes |\/| Consistent

System makes suggestions based on data from
practitioners, vendors and automated benchmarks:

* *

. 4/5
4/5 e redis 5/5 .mongoDB
3/5 5/5



Summary . I

High-Level NoSQL Categories:

» Key-Value, Wide-Column, Docuement, Graph
» Two out of {Consistent, Available, Partition Tolerant}

The NoSQL Toolbox: systems use similar techniques
that promote certain capabilities

i Functional
| Techmqges oromote C'" L) o :
Sharding, Replication, equirements
Storage Management,

Query Processing

ﬂ(‘

Non-functional

\& Requirements
Decision Tree



Summary

Current NoSQL systems very good at scaling:
» Data storage

» Simple retrieval
But how to handle real-time queries?

(O
(O

Classic NoSQL Streaming Real-Time
Applications System System Applications
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NoSQL & Real-Time Data Management
In Research & Practice — Part 2
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Outline

[

o
o

Introduction
Where From? Where To?
Stream Processing

Real-Time Databases

Future Directions

A Short History of
Data Management
Database Management:
e Triggers, ECA rules
e Materialized Views,
Change Notifications
Data Stream Management:
* General Architecture
* Stream Operators
* Approximation &
Sampling
* CEP



A Short History of Data Management
Hot Topics Through The Ages

: CEP & Stream
Relational Databases S Processing
B d
Entity-Relationship Model R Spark agen
: apReduce
Trlggers SQL Starburst STREAM . Samza
Ingres Standard Telegraph Bigtable Meteor
HiPAC GFS
System R Rapide flink | e
PostgreSQL DYREmE N | Firebase
Relational 5 Aurora & | RethinkDB
Model Borealis ~torm
Big Data & Real-Time

ive D
Active Databases NoSQL Databases
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TRIGGERS & MORE

Active Database Features




Databases are Passive
Challenge: How to Build Reactive Applications?

What'’s the
current state? D A @
circular shapes ——
0| | ) R
- 4@

Periodic Polling for query result maintenance:
- inefficient
- slow

A



Active Database Features
Modeling Behavioral Domain Aspects

Triggers: simple action-mechanisms
Use cases:
* (Referential) integrity
* Change data capture

ECA rules: Event-Condition-Action
== Captures composite events

More expressive than triggers

(rule languages)

Advanced use cases:

- Materialized view maintenance

* Pattern recognition

* (complex) event processing

==




View Maintenance

Keeping Track of Query Results

Materialized Views: precomputed query results

Used to speed up pull-based queries, e.g in data
warehouses

Implementation aspects:

- Eager vs. lazy

* Incremental vs. recomputation-based

- Partial maintenance vs. full maintenance

+ Self-maintainability vs. expressiveness

Change Notification Mechanisms: inform subscribers

() of possibly invalidated query results
Used to invalidate caches in the middle tier (cf. 3-tier stack)



View Maintenance By Example
Matching Every Query Against Every Update

]

:
-
—> Potential bottlenecks:
Number of queries

Write throughput

* Query complexity

Similar processing for:
* Triggers
e ECATrules






Data Stream Management Systems
High-Level Architecture

archive
stream query (offline)
processor

. 3

working memory database



Typical Stream Operators

Examples
Filter & Transform Group
ohes _, """ _ smen He
=:= [ :'IA - ITXX
Filter Map ee GroupByKey eo e
Aggregates Windows

®
COUNTY()

https://www.infog.com/presentati

| >
Tumbling

e e >

Sliding

https://www.infog.com/presentation

ons/stream-processors-databases

s/stream-processing-apache-flink



https://www.infoq.com/presentations/stream-processors-databases
https://www.infoq.com/presentations/stream-processing-apache-flink

s

Complex Event Processing

Detecting Patterns

Abstraction from raw event streams

Detection of relationshigs be
compiex even

:\;/veen events

Often m&jeied in abstractlo@ierarchies O
Techniques: < O <
B MmN K|
ranstormatl , THTering
Correlation, regation, ...
Pattern detection low-level events
- complsit e ASKI L ARAIIRAGID "2
e, B :ﬁ*i% e
* P - ¥ WU 9 et e

event patterns

Illustration taken from: Bruns, R. & Dunkel, J, Complex Event Processing: Komplexe

Analyse von massiven Datenstrémen mit CEP (2015). Springer Vieweg, 2015




Notions of Time
Arrival Time vs. Event Time

Arrival time: When was the event received?
Event time: When did the event occur?

Clock Skew: difference between arrival and event time

((A)) ETT——— processing time
14 13 12 11 10

9 8 7 é 5 4 3 2 1

1012 6 091537 2113 1

! l data stream
- event time
©

m [llustration take from: Stephan Ewen, How Apache Flink™ Enables New Streaming Applications, Part 1 (2015)
https://data-artisans.com/blog/how-apache-flink-enables-new-streaming-applications-part-1 (2018-03-16)



https://data-artisans.com/blog/how-apache-flink-enables-new-streaming-applications-part-1

Approximation & Load Shedding
Provide the , Best” Answer While Avoiding to Fall Behind

Sampling: can be optimized for different things, e.g.
Position stream (e.g. ,select every 10th item®)
Value (e.g. hash partitioning)

Semantic criteria
Prohibitive!

raw stream A A

Sampled
stream



Summary

Database

Stream

Update rate

Low

High, bursty

Primitive Persistent collections Transient streams
Temporal scope Historical Windowed
Access random sequential
Queries One-time Continuous
Query Plans Static Dynamic
Precision Accurate Approximate



Outline

Big Picture:
* Processing Pipelines
e Stream vs. Batch

.  Lambda vs. Kappa
Q4 Stream Processing Architecture

o Big Data + Low Latency

Introduction

System Survey:
 Storm/Trident

Real-Time Databases * Samza
e Spark Streaming
* Flink
. . * Discussion:
-9 Future Directions . Comparison Matrix

e Other Systems



OVERVIEW

Scalable Data
Processing




A Data Processing Pipeline

We are here!

Persistence/
1/\O) Streaming I_Processing | Serving Application



Data Processing Frameworks
Scale-Out Made Feasible

Data processing frameworks hide complexities of scaling, e.g.:

* Deployment - code distribution, starting/stopping work

* Monitoring - health checks, application stats

e Scheduling - assigning work, rebalancing

* Fault-tolerance - restarting workers, rescheduling failed work

Running in cluster

Running on single node

I =1 Scaling out
K5 | >




Big Data Processing Frameworks
What are your options?

Spoﬂ? Ggogle Dataflo_w @ HHHHH

Wh aJ;J;,O vse when?

@ Flink §€, kafka streams
o TEREE

low latency

c concord

high throughput




CONCEPTS

Batch vs. Stream
Processing



Batch Processing
Volume”

e Cost-effective & Efficient

» Easy to reason about: operating on complete data
But:

* High latency: periodic jobs (e.g. during night times)

> =P = <= [

Persistence Batch Serving

Application
(e.g. HDFS) (e.g. MapReduce) (e.g. HBase) PP



Stream Processing
\elocity“

Low end-to-end latency
Challenges:

Long-running jobs - no downtime allowed
Asynchronism - data may arrive delayed or out-of-order
Incomplete input - algorithms operate on partial data
More: fault-tolerance, state management, guarantees, ...

- -»Q?-»-é-»

Streaming Real-Time

Servin Application
(e.g. Kafka, Redis) (e.g. Storm) g Pp



Lambda Architecture
Batch(D, 4) + Stream(D, ) = Batch(D,,)

e Fast output (real-time)

» Data retention + reprocessing (batch)
— ,eventually accurate” merged views of real-time & batch
Typical setups: Hadoop + Storm (= Summingbird), Spark, Flink

* High complexity 2 code bases & 2 deployments

o,
’ ReaI-Time\
g R

Streaming Persistence Batch Serving Application

(e.g. Kafka, Redis)

m Nathan Marz, How to beat the CAP theorem (2011)
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html



http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

Kappa Architecture
Stream(D,,) = Batch(D,,)

* Simpler than Lambda Architecture

e Data retention for history

* Reasons against Kappa:
* Existing legacy batch system
 Special tools only for a particular batch processor
* Only incremental algorithms

Q o> &3 <o [ il ]

Streaming + re.tent.lon Real-Time Serving Application
(e.g. Kafka, Kinesis)

m Jay Kreps, Questioning the Lambda Architecture (2014)
https://www.oreilly.com/ideas/questioning-the-lambda-architecture



https://www.oreilly.com/ideas/questioning-the-lambda-architecture

. Y]
(> » Q))
Wrap-up ;/f—q‘
Data Processing Pad @ -

e Processing frameworks abstract from scaling issues

& &

Batch processing Stream processing

* easy to reason about e quick results

e extremely efficient e purely incremental

* huge input-output e potentially complex to
latency handle

* Lambda Architecture: batch + stream processing
» Kappa Architecture: stream-only processing



SURVEY

Popular Stream
Processing Systems



Processing Models
Batch vs. Micro-Batch vs. Stream

stream micro-batch batch

&Flink ,

5 sTorM ‘
Trident 5‘)('.!!?g

Streaming

m T ¢ a4 Amazon Elastic
LL_/-J MapReduce

—mmm >
low latency high throughput



Storm ) STORM

,Hadoop of real-time“

Overview
First production-ready, well-adopted stream processor
Compatible: native Java API, Thrift, distributed RPC
Low-level: no primitives for joins or aggregations
Native stream processor: latency < 50 ms feasible
Big users: Twitter, Yahoo!, Spotify, Baidu, Alibaba, ...
History
2010: developed at BackType (acquired by Twitter)

2011: open-sourced
2014: Apache top-level project



Dataflow 55 STORM

Directed Acycliq Graphs (DAG}: : |
, streaming
e Spouts: pull datarinte topelegy—--=---- -
* Bolts: do proces¥ng
* Asynchrono
out

* Lineage can =
— At-least-once ha

overhead / (oY
i
Cycles!
5y
bolt

| serving ,



State Management Y STORM

Recover State on Failure

* In-memory or Redis-backed reliable state
* Synchronous state communication on the critical path
— infeasible for large state

I serving



Back Pressure Y cTORM
Throttling Ingestion on Overload

1. too many 2. tuples time
tuples > out and fail

3. tuples get
replayed

Approach: monitoring bolts’ inbound buffer
1. Exceeding high watermark — throttle!
2. Falling below low watermark — full power!



Trident

Stateful Stream Joining on Storm

Overview:
Abstraction layer on top of Storm
Released in 2012 (Storm 0.8.0)
Micro-batching
New features:
* High-level API: aggregations & joins
- Strong ordering
- Stateful exactly-once processing

- Performance penalty

5 STORM

Trident



Trident

Partitioned Micro-Batching

3 Parti- /

Spout

Trident stream

Operation

Batch 1

Trident stream

Batch 2

El-u [namez"value"]l

i|-u [name="va1ue"]|

u_l [name="value"] |

tions

L I-u [name="value"] |

|-u [name="va1ue"]|

u_l [name="value"] |

1
1
1
1
I—u [name="value"

]

|-u [name="va1ue"]|

u_l [name="value"] |

| —

[~

Illustration taken from: “Storm

applied”, Sean T. Allen et al.

3 Batches

STORM
Trident

Partition 1
Partition 2

Partition 3



s

Real-Time on Top of Kafka
Overview 15t Recora ek
Co-developed with Kafka l l

— Kappa Architecture
Simple: only single-step jobs
Local state

i
ﬂiEﬂ-iEE?BQ‘IEIHIEE

Native stream processor: low latency
Users: LinkedIn, Uber, Netflix, TripAdvisor, Optimizely, ...

History
Developed at LinkedIn

2013: open-source (Apache Incubator)
2015: Apache top-level project

Illustration taken from: Jay Kreps, Questioning the Lambda Architecture (2014)
https://www.oreilly.com/ideas/questioning-the-lambda-architecture (2017-03-02)



https://www.oreilly.com/ideas/questioning-the-lambda-architecture

Dataflow
Simple By Design

Kafka
* Job: processing st-eE (ng'aﬁn‘bat-) —————— 1- -

— Robust : :
— But: often sev ra$%zé-]Ob S’E'mza.]Ob
* Task: job instancq (parattefsm) '@{3

* Message: single data ite

* Output persisted in Kafka Kaflka
— EasydatashariNg = = = = = = e e e e e e e e e = =
— Buffering (no back pressurel) ¢

— But: Increased latency
* Ordering within partitions
* Task = Kafka partitions: not-e

m Martin Kleppmann, Turning the database inside-out with Apache Samza (2015)
https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/ (2017-02-23)



https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/

Samza
Local State

Advantages of local state:
 Buffering - D
> N |bggk RERSSUIRy sob
- At-lea e delive

Stream 'Proceséiﬁg Job

QL QL3

=

Output  Changelog
Stream Stream

5 BHE

Remote State Local State

m Illustrations taken from: Jay Kreps, Why local state is a fundamental primitive in stream processing (2014)
https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing (2017-02-26)



https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing

State Management
Straightforward Recovery

Stream A

Restores consistent
state by consuming
from its changelog
partition

i

l Restored F—
l H H
[

L

Task 1 E Task 2 @

Stream B Changelog Stream

m Illustration taken from: Navina Ramesh, Apache Samza, LinkedIn’s Framework for Stream Processing (2015)
https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing (2017-02-26)



https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing

Spark I
,MapReduce successor” Spr K
Overview

High-level API: immutable collections (RDDs)

Streaming

Community: 1000+ contributors in 2015
Big users: Amazon, eBay, Yahoo!, IBM, Baidu, ...

History
2009: developed at UC Berkeley

2010: open-sourced
2014: Apache top-level project




Spark Streaming spaik’

Streaming

Overview
High-level API: DStreams (~Java 8 Streams)
Micro-Batching: seconds of latency
Rich features: stateful, exactly-once, elastic

History
2011: start of development
2013: Spark Streaming becomes part of Spark Core



Spark Streaming Soark’

Core Abstraction: DStream Streaming

Resilient Distributed Data set (RDD)
Immutable collection & deterministic operations

Lineage tracking:
— state can be reproduced
— periodic checkpoints reduce recovery time

DStream: Discretized RDD
RDDs are processed in order: no ordering within RDD
RDD scheduling ~50 ms — latency >100ms

input data batches of batches of
stream Spark input data Spark processed data

Streaming Engine

Illustration taken from:
http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview (2017-02-26)



http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview

Example soark’

Counting Page Views Streaming

EpageViews = preadStream("http://...", "1ls")
~ones = pageViews.map(event => (event.url, 1))
counts = ones.runningReduce((a, b) => a + b)

_________________________________________________________________________________________________________

pageViews ones counts
DStream DStream DStream

interval
[0, 1)

map reduce

interval
[1,2)

Zaharia, Matei, et al. "Discretized streams: Fault-tolerant streaming computation at scale." Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 2013.



Flink

Overview

Native stream processor: Latency <100ms feasible

Abstract API for stream and batch processing, stateful, exactly-
once delivery

Many libraries: Table and SQL, CEP, Machine Learning , Gelly...
Users: Alibaba, Ericsson, Otto Group, ResearchGate, Zalando...
History

2010: start as Stratosphere at TU Berlin, HU Berlin, and HP!
Potsdam

2014: Apache Incubator, project renamed to Flink
2015: Apache top-level project



Architecture
Streaming + Batch Flink

& .
O =

DataStream (Java / Scala) DataSet (Java/Scala)

Streaming dataflow runtime

Table
Hadoop M/R
Table

https://www.infoq.com/presentation
s/stream-processing-apache-flink



https://www.infoq.com/presentations/stream-processing-apache-flink

Managed State

Streaming + Batch

Flink

Automatic Backups of local state
Stored in RocksDB, Savepoints written to HDFS

Web g Operator with windows
server (large state)

Periodic backup /
State recovery
backend

Distributed

File System

Stream processor: Flink

https://www.infoq.com/presentation
s/stream-processing-apache-flink



https://www.infoq.com/presentations/stream-processing-apache-flink

Highlight: Fault Tolerance
Distributed Snapshots

data stream

Do Flink

<+ newer records older records =
checkpoint checkpoint stream record
barrier n barrier n-1 (event)
l J \ J \ J
Y Y Y
part of part of part of
checkpoint n+1 checkpoint n checkpoint n-1

* Ordering within stream partitions
* Periodic checkpoints

—pExactly-once
* Recovery:
1. reset state to checkpoint
2' l’ep/ay data from there m Iriltl’::tsrj’;ic?.r;;?((:ir;.f;::/];)roiects/flink/flink-docs-release-

1.2/internals/stream checkpointing.html| (2017-02-26)



https://ci.apache.org/projects/flink/flink-docs-release-1.2/internals/stream_checkpointing.html

WRAP UP
Side-by-side
comparison




Comparison

Strictest
Guarantee

Achievable
Latency

State
Management

Processing
Model

Backpressure

Ordering

Elasticity

Storm

at-least-
once

<100 ms

(small state)

one-at-a-
time

v

x
v

Trident

exactly-
once

<100 ms

(small state)

micro-batch

v

between
batches

v

Spark
Samza P )
Streaming
at-least-
exactly-once
once
<100 ms <1 second

v v

one-at-a- .
. micro-batch
time
no
(buffering) ‘/
within between
partitions batches

% v

Flink
(streaming)

exactly-once

<100 ms

v

one-at-a-
time

within
partitions

X



Performance
Yahoo! Benchmark

Based on real use case:
Filter and count ad impressions
10 minute windows

“Storm [...] and Flink [...] show sub-second latencies at
relatively high throughputs with Storm having the lowest
99th percentile latency. Spark streaming [...] supports high
throughputs, but at a relatively higher latency.”

From https://yahooeng.tumblr.com/post/135321837876/
benchmarking-streaming-computation-engines-at




Other Systems

Heron Apex Dataflow
(™ ” R
w APEX
Kafka IBM InfoSphere
Beam
Streams Streams

3 i &3

And even more: Kinesis, Gearpump, MillWheel, Muppet,
S4, Photon, ...




Summary

Stream Processors:

5% STORM épnnk m Spoflf(? Streaming

(—é_é—é—é—)

latency throughput

Many Dimensions of Interest: consistency guarantees,
state management, backpressure, ordering, elasticity, ...



Outline

Introduction
Stream Processing

Real-Time Databases
Push-Based Collections

Future Directions

%ﬂ:
=
e %

Big Picture:

Why Push-Based
Database Queries?
Where Do Real-Time
Databases Fit in?

System Survey:

Meteor
RethinkDB
Parse
Firebase

Discussion:

Comparison Matrix
Other Systems



VE Y My e o

TR 0 1 e o

REAL-TIME DBS

Making Databases

Push-Based




Traditional Database Access

No Request? No Data!
What'’s the
current state?

circular shapes

100}

Periodic Polling
- inefficient
- slow

LIAO
A

58



Real-time Databases

Always In-Sync With Database State

circular shapes

U

LIAO

Real-Time Queries for query result maintenance:

- efficient
— fast

A

59



Quick Comparison
DBMS vs. RT DB vs. DSMS vs. Stream Processing

METE\ R
4) RethinkDB

@ Parse

7”7 Firebase

Database Real-Tim@ata Stream Stream
Management Databas®&danagement Processing

, _ Persmtent/ ephemeral
static collections  evolving collehcemeral streams ctreams

DN S S

pull-based push-based



—

System Survey /7 &
, |




Meteor MET ER\\R

Overview:

JavaScript Framework for interactive apps and websites

* MongoDB under the hood

* Real-time result updates, full MongoDB expressiveness

Open-source: MIT license

Managed service: Galaxy (Platform-as-a-Service)
History:

2011: Skybreak is announced

2012: Skybreak is renamed to Meteor

2015: Managed hosting service Galaxy is announced



Live Queries

N\
Poll-and-Diff MET Ex\ R

* Change monitoring: app servers detect relevant changes
— incomplete in multi-server deployment

* Poll-and-diff: queries are re-executed periodﬁally
— staleness window

[
— does not scale with queries

monitor el — — — — o e
mcommg |/
writes METE\\\R | METE\\R !

I app server ' I app server |
~ ~ /




Oplog Tailing METE\\R

Basics: MongoDB Replication

* Oplog: rolling record of data modifications ‘ :l

* Master-slave replication:

Secondaries subscribe to oplog write operation

Primary C

.mongo cluster
(3 shards)

3 apply

propagate change

Secondary C1 Secondary C2 Secondary C3



Oplog Tailing METE\\R
Tapping into the Oplog

* FEvery Meteor server receives
all DB writes through oplogs .mongo cluster (3 shards)

anaryA Primary B PrlmaryC

(
I
I
I
I
\

query -~ -
(when in doubt)<
monito
—_—— \

r
: oplog O‘ |
. METE\\R | METE\\R |
(\push relevant events gp Server I ' App server /I
/ \ CRUD /\

—— oy




Oplog Tailing METE\\R

Oplog Info is Incomplete

What game does Bobby play?

— if baccarat, he takes first place!
— if something else, nothing changes!

Partial update from oplog:
{ name: ,Bobby"“, score: 500 }

Baccarat players sorted by high-score

I 1. { name: ,Joy"“, game: ,baccarat"“, score: 100 }
I 2. { name: ,Tim"“, game: ,baccarat"“, score: 90 }
I 3. { name: ,Lee"“, game: ,baccarat"“, score: 80 }




Oplog Tailing METE\\R
Tapping into the Oplog

* FEvery Meteor server receives
all DB writes through oplogs .mongo cluster (3 shards)

- does not scale “Primary A Primary B Primary C*

(
I
I
I
I
\

query -~ -
(when in doubt)<
monito
- -\ -_——-

r
= oplog I
' METE\\\R | METE\\R I
— 1 App server ' | App server '

<« Ppush relevant events N = 7i_

Bottleneck!



RethinkDB ¢)RethinkDB

Overview:
,MongoDB done right“: comparable queries and data model, but also:
- Push-based queries (filters only)
* Joins (non-streaming)
* Strong consistency: linearizability
JavaScript SDK (Horizon): open-source, as managed service

Open-source: Apache 2.0 license

History:
2009: RethinkDB is founded
2012: RethinkDB is open-sourced under AGPL
2016, May: first official release of Horizon (JavaScript SDK)
2016, October: RethinkDB announces shutdown
2017: RethinkDB is relicensed under Apache 2.0



RethinkDB

 Range-sharded data
e RethinkDB proxy: support node
without data
e Client communication
* Request routing
e Real-time query matching

-—ees e e . -

» FEvery proxy receives
all database writes
— does not scale

. RethinkDB proxy v RethinkDB proxy
App server App server
William Stein, RethinkDB versus PostgreSQL: my personal experience (2017) |
m http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html (2017-02-27) BOttIeneCk'

m Daniel Mewes, Comment on GitHub issue #962: Consider adding more docs on RethinkDB Proxy (2016)
https://github.com/rethinkdb/docs/issues/962 (2017-02-27)

- e s o e


http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html
https://github.com/rethinkdb/docs/issues/962

Parse @ Parse

Overview:
Backend-as-a-Service for mobile apps
* MongoDB: largest deployment world-wide
* Easy development: great docs, push notifications, authentication, ...
* Real-time updates for most MongoDB queries
Open-source: BSD license
Managed service: discontinued
History:
2011: Parse is founded
2013: Parse is acquired by Facebook
2015: more than 500,000 mobile apps reported on Parse
2016, January: Parse shutdown is announced
2016, March: Live Queries are announced
2017: Parse shutdown is finalized



Parse @
LiveQuery Architecture Parse

* LiveQuery Server: no data, real-time query matching
 FEvery LiveQuery Server r“rm”mpam LiveQuery Server

Event ‘
LiveQuery Subscribe Message Client
all data base writes Message
Parse Server L\ Event
— does nof scale POt | essage N WesSokerSoner (<]
: : Subscriber ,
. ParseObject ParseObject 7)| m .
Publish
ublisher N. Update Update Message Client
Parse Server } Redis »  Parse LiveQuery Server
y4
. y Event Client
Publisher Subscriber W
1 Subscribe
PaLs;(?a?éect Message WebSockerServer |<
v
Event
LiveQuery Message Subscribe .
Client
Message

Bottleneck!

[llustration taken from:
http://parseplatform.github.io/docs/parse-server/guide/#live-queries (2017-02-22)



http://parseplatform.github.io/docs/parse-server/guide/#live-queries

Firebase Firebase

Overview:

Real-time state synchronization across devices

Simplistic data model: nested hierarchy of lists and objects

Simplistic queries: mostly navigation/filtering

Fully managed, proprietary

App SDK for App development, mobile-first

Google services integration: analytics, hosting, authorization, ...
History:

2011: chat service startup Envolve is founded

— was often used for cross-device state synchronization
— state synchronization is separated (Firebase)

2012: Firebase is founded
2013: Firebase is acquired by Google
2017, October: Firestore is released



Firebase .
. o ¥ Firebase
Real-Time State Synchronization

* Tree data model: application state ~JSON object
* Subtree synching: push no;c!ati s for specific keys only
|é

— Flat structure for fine granu

- Limited expressiveness!

O 10

m [llustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)



https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html

Firebase
Query Processing in the Client

” Firebase

* Push notifications for specific keys only
* Drderby a single attribute
o EPPIESIEEfifter on that attribute

. “message_1” : : :
« NorptrividlgUen/processing in client

- dpes ngt scale! name: “Frank”

message: “Hello. Anyone here?”
“message_2”"

name; “Jeff”

message: “Sorry, working on some AI”

m Jacob Wenger, on the Firebase Google Group (2015)
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko (2017-02-27)

m [llustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)



https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko

Firebase
Hard Scaling Limits

Firebase

“Scale to around 100,000 concurrent connections
and 1,000 writes/second in a single database.
Scaling beyond that requires sharding your data
across multiple databases.”

Bottleneck!

Firebase, Choose a Database: Cloud Firestore or Realtime Database (2018)
https://firebase.google.com/docs/database/rtdb-vs-firestore (2018-03-10)



https://firebase.google.com/docs/database/rtdb-vs-firestore

Firebase

Firestore: New Model
documents

q/ references

” Firebase

collections

m [llustration taken from: Todd Kerpelman, Cloud Firestore for Realtime Database Developers (2017)
https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html (2018-03-10)



https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html

Firebase
Firestore: New Mode|

Y Firebase

finer access granulates ,

on . N

tree-like structure

m [llustration taken from: Todd Kerpelman, Cloud Firestore for Realtime Database Developers (2017)
https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html (2018-03-10)



https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html

Firebase
Firestore: Summary

Firebase

 More specific data selection
* Logical AND for some filter combinations

... But:
 Still Limited Expressiveness
* No logical OR

* No logical AND for many filter combinations

* No content-based search (regex, full-text search)
 Still Limited Write Throughput:

* 500 writes/s per collection

e 1 writes/s per document

m Firebase, Firestore: Quotas and Limits (2018)
https://firebase.google.com/docs/firestore/quotas (2018-03-10)



https://firebase.google.com/docs/firestore/quotas

Honorable Mentions
Other Systems With Real-Time Features

(9 GRAPHCOOL

rapid.io
~OrientDB
y

ms elasticsearch

— ‘ mongo

&« realm



REAL-TIME DBS

Summary & Discussion




Wrap-Up

METE\R [{Rethinkps| @) Parse |/ Firebase
Poll-and-Diff Change Log Tailing Unknown
Write Scalability | v/ X X
?

Read Scalability

(100k connections)

Composite
Filters (AND/OR)

NN %

(AND In Firestore)

Queries

Event Stream

NSNS NN %
NSNS N NN %

NyU® % NN NS

Sorted Queries X
(single attribute)
Limit X v
Offset X
(value-based)
Self-Maintaining X X

Queries

v

CQ_:ll
O



Summary J@( ¥
Real-Time Databases: Major challenges Ead 2

fﬁl_ Scalability:

» Handle increasing throughput
» Handle additional queries

q@ Expressiveness:
» Content-based search? Composite filters?
» Ordering? Limit? Offset?

c@ Legacy Support:

» Real-time queries for existing databases?
» Decouple OLTP from real-time workloads?



Outline

Introduction

o

% Stream Processing
Real-Time Databases

-:9’- Future Directions
= Current Research & Outlook

Caching Dynamic Data:
* Why is the Web Slow?
* Caching to the Rescue!
* Query Caching
Real-Time Queries:
e Scalability
* Expressiveness
* Legacy Compatibility
* Use Cases
Open Challenges:
* TTLs & Transactions
e Polyglot Persistence
Summary
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Our Research at the
University of Hamburg
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Problem: Slow Websites
Two Bottlenecks: Latency and Processing

" _High

Latency =
Y o\
O “-—=

Processing Overhead 3

\‘i’/'

W S A




Solution: Global Caching
Fresh Data From Distributed Web Caches

IOW atency - \Q{Q \3 —&




New Caching Algorithms

Solve Consistency Problem




Consistent Web Caching

The Cache Sketch — =
o Jiah B

purge(ob3) —E°|

Browse — —
CDN
Cache ‘
= P I \\
hasha(oid) I hashB(oid) hashA(oid) / '\ hashB(oid)
] \
1 \ H \
! \ ! \
i \ Flat(Counting Bloomfilter) | 4 <
Of1|1(1]1] < 0311141
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RESEARCH —

How to Invalidate DB
Query Results?




InvaliDB

Invalidating DB Queries

How to detect changes to |

query results:

,,Give me the most popular
products that are in stock.”

g

$10.25-$179.99 $97.99

Ends in 16:45:48 List: $449-95 (35% off)

Up to 50% Off Handbags Ends in 16:45:48

ey 21 Save on Hitachi Gas Powered Leaf
Blower
Ships from and sold by Amazon.com.
e e ke e ol 1961

l See details | [ Add o Cart

w
)

$15.63 - $16.79

9% Claimed Ends in 4:40:49
BESTEK surge protector
Sold by BESTEK. and Fulfiled by Amazon.

o el 162

Choose options I

$18.66
Price: $39-99 (53% off)

18% Claimed Ends in 3:05:49
AUKEY Table Lamp. Touch Sensor
Bedside Lamp + Dimmable War.
Sold by Aukey Direct and Fulfiled by
Amazon.

e e e 57 669

l Add to Cart




InvaliDB =
Invalidating DB Queries Real-Time

Queries
(Websockets) [

Create Fresh Caches
- . .
Update = B B
Delete
Server

Pub-Sub ARz




Bagend Real-Time Queries
Realtime Decoupled

N
i

BaQend

- !
App Server ! |

Keeps data up-to-date!



InvaliDB: A Scalable Real-Time Database Design
Two-Dimensional Workload Partitioning

Read & Write Scalability: @ Pluggable Query Engine:
» many concurrent users /l\ » legacy-compatibility

» high write throughput » multi-tenancy across
Q read scalability

» no single-server bottleneck databases

query
partition 1

query query
partition 2 partition 3 @] p
1, -

'partition 1 :
|

'partition 2 |
|

write
partition 3 |

o

write scalability

P
<«




Bagend Real-Time Queries
Staged Real-Time Query Processing

Change notifications go through different
query processing stages:
1. Filter queries: track matching status

— before- and after-images

2. Sorted queries: maintain result order
3. Joins: combine maintained results

: Filtering
< Event! :
LT
: Ordering
| a
< Event!
D
|
I Joins
< Event! : \/ ]
\/ ! !
VvAggregation

[

4. Aggregations: maintain aggregations | < °7'
[
[

> ]




Bagend Real-Time Queries
Low Latency + Linear Scalability

Linear Scalability Stable Latency Distribution

80M

@9 99th Pe;centile Latency‘ < 25ms Frequency
l I 99th Percentile Latency < 20 ms %
40M || ¢ # 99th Percentile Latency =< 15ms| ol 271 0.15 i N 1 node (3M ops/s)
= T Tt i 16 nodes (48M ops/s)
O Z20MP 2 e Tt |
3 ' 0.10}
Q_ L
c
2 10M|
o - ] J
-|E L7 ".“ : : 0-05 B : I-"l
5M| .~ ,’ SO OO URUOR ST I w -
A | | S
2.5M 2 4 g 16 5 10 15 20 25 30
Matching Nodes Latency

m Quaestor: Query Web Caching for Database-as-a-Service Providers
VLDB ‘17



Programming Real-Time Queries

JavaScript API

_______________________________________________________________________________________

vaP query = DB.Tweet.find()
.matches('text', /my filter/)
.descending('createdAt’)
.offset(20)
.1imit(10);

Static Query




Live Demo!
* Wednesday, 15:30
e /Zuse 210



Bagend
Try It Out!

Platform

— Platform for building
(Progressive) Web Apps

—15x Performance Edge
— Faster Development

—Turns Existing Sites
into PWAs

—50-300% Faster Loads
— Offline Mode



Speed Kit
Bagend Caching for Legacy Websites

Website with Speed Kit Bagend
Snippet Service Worker Service

l Fast Requests m

3rd Party : ;ﬁ _Existing
s BB Services Backend

—

Requests




SPEEd K|t https://test.speed-kit.com
Measure Your Page Speed!

https://www.baur.de/ TH =

You are using Speed Kit 1.12.1

Without Speed Kit Your Website (Speed Kit 1.12.1)
1283 ms

Sweet Dreams

Without Speed Kit Your Website

1.3s 0.7s



https://test.speed-kit.com/

Speed Kit
Built for Market Leaders

For a large e-commerce company like Baur, supreme
performance and a snappy user experience are vital. Speed Kit
helps Baur.de stay ahead of the competition by accelerating
page loads through cutting-edge technology. Finally, there is a
German player in the web performance market that does not
only pioneer a superior approach, but also shines through
competent onboarding and immediate support.

Revenue: 1 000 000 000 € for 2018 u
Traffic: 70 000 000 PlIs per month

A member of the otto group



FUTURE DIRECTIONS

Open Challenges
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TTL Estimation
Quantifying Cacheability of Dynamic Content

Setting: server assigns a caching time-to-live (TTL) to
each record and query result

Problem:

e TTLs too short: Bad cache-hit rate
TTLs too large: Bloom filter‘s false positive rate degrades

Approach: Collect access metrics and estimate

Objects: calculate the expected value of the time to next write (assuming
a poisson process)

,# Queries:
- Initial estimate: estimated time until first object in result is updated

- Refinement: upon invalidation TTL is adapted towards observed TTL
using an EWMA



TTL Estimation

Learning Representations

Setting: query results can either be represented as
references (id-list) or full results (object-lists)

Id-Lists Object-Lists
{idy,id,,id3)} {{id:1,val:"a'},{id: 2,val:'b"},
{id: 3,val:'c'}}
Less Invalidations Less Round-Trips

Current Approach: Cost-based decision model that
weighs expected round-trips vs expected invalidations

Desired: Adaptive agent that actively explores decisions



TTL Estimation U

(a) Growing Pattern (b) On/Off Pattern

Open Challenge: Learning Workloads _/\ o ey

(¢) Bursty Pattern (d) Random Pattern

,Backwards-oriented (current approach):
* Mesure & use moving average or newest measurement
* Cannot react to spikes/fluctuation nor detect patterns

»Predictive online-learning”:

- Extrapolate using regression (e.g. linear or polynomial) or
time-series models (Exponential Smoothing, AR, ARIMA,
Gaussian Processes, ...)

* Resource intensive, very difficult to select & evalute model

Q ,Reactive”:

- Use Reinforcement learning to automatically explore
decisions

- Rewards usually noisy, delayed or hidden (e.g. staleness)



Polyglot Persistence Mediator
Schemas can be annotated with requirements/SLAs

Write Throughput > 10,000 RPS |

- Read Availability > 99.9999%

- Scans = true T
- Full-Text-Search = true
- Monotonic Read = true

Schema

DBs
Tables
Fields

((C




Polyglot Persistence Mediator
Routing to the ,,optima

Application

Database 4 e Polyglot Persistence
Metrics T, -». Mediator

datbase system

Data and
Operations

& Routing
,,,, Model

Recursive Ranking Algorithm
for schemaElemt 2 DB mapping

Annotated
Schema

Latency < 30ms




Polyglot Persistence
Open Challenges

_
e

Meta-DBaaS: Mediate over DBaaS-systems unify SLAs

Live Migration: adapt to changing requirements

Database Selection: Actively minimize SLA violations

Utility Functions/SLAs: Capture trade-offs comprehensively

Workload Management: Adaptive Runtime Scheduling



Distributed Transactions

Q Transaction Abort Rates: How to mitigate high abort
rates caused by long running transactions?

Automatic Transaction Protocol Selection: Can the
optimal protocol (2PL, BOCC+, RAMP, ...) be learned
and chosen at runtime?

Transactional Visibility For Real-Time Queries: How to
include transactions without introducing bottlenecks?

"«



CLOSING TIME

Summary




Summary
Real-Time Data Management

T ""-"F-----"-"-">

pull-based push-based
Database Real-Time Data Stream Stream

Management Databases Management Processing

static evolving structured unstructured
collections collections streams streams

S 6 b6



Our Related Publications

S C i e n t i fi C P a p e rS : A Real-Time Database Survey: The

Architecture of Meteor, RethinkDB, Parse
& Firebase

Quaestor: Query Web Caching for Database-as-a-Service Providers I ————
VLDB ‘17 tior

8

NoSQL Database Systems: A Survey and Decision Guidance
SummerSOC ‘16

o

Real-time stream processing for Big Data
it - Information Technology 58 (2016)

8

m The Case For Change Notifications in Pull-Based Databases
BTW ‘17

A Real-Time Database Survey:
The Architecture of Meteor, RethinkDB, Parse & Firebase

Blog Posts:

Real-Time Databases Explained: Why Meteor, RethinkDB, Parse and Firebase Don't Scale
Bagend Tech Blog (2017): https://medium.com/p/822ff87d2f87

Learn more at blog.bagend.com!



blog.baqend.com
https://medium.com/p/822ff87d2f87

NoSQL Databases: a Survey and Decision Guidance

Together with our colleagues at the University of Hamburg, we—that is Felix Gessert,
Wolfram Wingerath, Steffen Friedrich and Norbert Ritter—presented an overview over
the NoSQL landscape at SummerSOC’16 last month. Here is the written gist. We give
our best to convey the condensed NoSQL knowledge we gathered building Bagend.

NoSQL Databases:

A Survey and Decision Guidance

TL;DR

Today, data is generated and consumed at unprecedented scale. This has lead to novel
approaches for scalable data management subsumed under the term “NoSQL” database
systems to handle the ever-increasing data volume and request loads. However, the
heterogeneity and diversity of the numerous existing systems impede the
well-informed selection of a data store appropriate for a given application context.
Therefore, this article gives a top-down overview of the field: Instead of contrasting the
implementation specifics of individual representatives, we propose a comparative
classification model that relates functional and non-functional requirements to
techniques and algorithms employed in NoSQL databases. This NoSQL Toolbox allows
us to derive a simple decision tree to help practitioners and researchers filter potential
system candidates based on central application requirements.

Scalable Stream Processing: A Survey of Storm,
Samza, Spark and Flink

Scalable Stream Processing:
A Survey of Storm, Samza,
Spark and Flink

With this article, we would like to share our insights on real-time data processing we
gained building Bagend. This is an updated version of our most recent stream processor
survey which is another cooperation with the University of Hamburg (authors:
Wolfram Wingerath, Felix Gessert, Steffen Friedrich and Norbert Ritter). As you may or
may not have been aware of, a lot of stream processing is going on behind the curtains
at Bagend. In our quest to provide the lowest-possible latency, we have built a system to
enable query caching and real-time notifications (similar to changefeeds in
RethinkDB/Horizon) and hence learned a lot about the competition in the field of

stream processors.

Read them on blog.bagend.com!



blog.baqend.com
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SPRINGER BRIEFS IN COMPUTER SCIENCE

code.talks
by BRI

Felix Gessert

Real-Time &
Stream Data
Management
Push-Based Data
® in Research &
Practice

code.talks S
by EERURER

@_ Springer

For videos & book,
visit slides.bagend.com!



slides.baqend.com

Thank you

{wingerath, gessert, ritter}@informatik.uni-hamburg.de

Blog: blog.bagend.com
Slides: slides.bagend.com

, @bagendcom

Remember: Live Demo on Wednesday, 15:30, Zuse 210!




