
Quaestor
Query Web Caching for DBaaS Providers
Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Erik Witt, Eiko Zoneki, Norbert Ritter

Aug 29, VLDB 2017, Munich

Who we are

Backend-as-a-Service Startup since 2014Research Project since 2010

Challenges and Main
Contributions

Industry Application

Introduction Main Part Conclusion

Motivation and
High-Level Overview

Presentation
is loading

Average: 9,3s

The Latency Problem

Loading…

-1% Revenue

-9% Visitors

-20% Traffic

State of the Art
Three Bottlenecks: Frontend, Latency and Processing

High Latency

Processing Overhead

Frontend

Netzwerk
Throughput vs. Latency

I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

Netzwerk
Bandbreite vs. Latenz

2× Throughput = Same Load Time

½ Lantecy ≈ ½ Load Time

Solution: Global Caching
Fresh Data From Distributed Web Caches

Low Latency

Less Processing

New Caching Algorithms
Solve Consistency Problem

1 0 11 0 0 10

Typical Speedup: 15x
Impact of Global Baqend Caching

T R Y T H I S

benchmark.baqend.com

0,2s
1,5s
1,6s

2,7s
3,8s

4,4s

California

0,3s
2,1s

1,8s
2,6s

4,2s
0,8s

0,3s
1,6s

1,9s
3,2s

5,3s
6,6s

0,3s
6,3s

4,7s
6,5s

10,0s
9,3s

Baqend
Azure
Parse

Firebase
Kinvey

Apiomat

Baqend

Baqend

Baqend

Frankfurt

Tokyo

Sydney

https://benchmark.baqend.com/

Challenges and Main
Contributions

Industry Application

Introduction Main Part Conclusion

Motivation and
High-Level Overview

Challenges
How to achieve globally low latency

Cache Coherence
How keep dynamic data up-to-
date in expiration-based caches?

Invalidation Detection
How detect when query
results change?

TTL Estimation
What data to cache for
how long?

1 2

3

1 4 020

purge(obj)

hashB(oid)hashA(oid)

31 1 110
Flat(Counting Bloomfilter)

hashB(oid)hashA(oid)

Browser
Cache

CDN

1

𝑓 ≈ 1 − 𝑒−
𝑘𝑛
𝑚

𝑘

𝑘 = ln 2 ⋅ (
𝑛

𝑚
)

False-Positive

Rate:

Hash-

Functions:

With 20.000 entries and a 5% false positive rate: 11 Kbyte

Consistency: Δ-Atomicity, Read-Your-Writes, Monotonic Reads,

Monotonic Writes, Causal Consistency

Cache Coherence
Dynamic Caching in Detail

Has Time-to-Live
(expiration)

Challenges
How to achieve globally low latency

Cache Coherence
How keep dynamic data up-to-
date in expiration-based caches?

Invalidation Detection
How detect when query
results change?

TTL Estimation
What data to cache for
how long?

1 2

3

InvaliDB on Storm

Server

Create
Update
Delete

Pub-Sub Pub-Sub

1 0 11 0 0 10 1 1

Fresh Bloom filter

Real-Time
Queries

(Websockets)

Fresh Caches

How to detect changes to
query results:
„Give me the most popular
products that are in stock.“

Add

Change

Remove

Invalidation Detection
Matching Queries and Updates

UpdateUpdate Database

Match!

Two-dimensional partitioning:
• by Query
• by Object
→ scales with queries and writes

Implementation:
• Apache Storm & Java
• MongoDB query language
• Pluggable engine

Subscription

Write op

17

InvaliDB
Filter Queries: Distributed Query Matching

var query = DB.Tweet.find()
.matches('text', /my filter/)
.descending('createdAt')
.offset(20)
.limit(10);

query.resultList(result => ...);

query.resultStream(result => ...);

Static Query

Real-Time Query

Programming Real-Time Queries
JavaScript API

Challenges
How to achieve globally low latency

Cache Coherence
How keep dynamic data up-to-
date in expiration-based caches?

Invalidation Detection
How detect when query
results change?

TTL Estimation
What data to cache for
how long?

1 2

3

Learning Representations
Determining optimal query result representation

 Setting: query results can either be represented as references (id-list) or full
results (object-lists)

 Approach: Cost-based decision model that weighs expected round-trips vs
expected invalidations

 Ongoing Research: Reinforcement learning of decisions

[𝑖𝑑1, 𝑖𝑑2, 𝑖𝑑3]

Object-ListsId-Lists

[𝑖𝑑: 1, 𝑣𝑎𝑙: ′𝑎′ , 𝑖𝑑: 2, 𝑣𝑎𝑙: ′𝑏′ ,
{𝑖𝑑: 3, 𝑣𝑎𝑙: ′𝑐′}]

Less Invalidations Less Round-Trips

 Problem: if TTL ≫ time to next write, then it is contained in Cache Sketch
unnecessarily long

 TTL Estimator: finds „best“ TTL and decides cacheability

 Trade-Offs:

TTL Estimation
Determining the best TTL and cacheability

Longer TTLsShorter TTLs

• higher cache-hit rates
• more invalidations

• less invalidations
• less stale reads

Verfahren: Zeit bis zum nächsten Write 𝐸[𝑇𝑤] schätzen
(Alex Protocol, EWMA, Deep Reinforcement Learning)

Gute TTLs optimaler Bloomfilter

TTL < TTLmin write-heavy Daten nicht cachen

Challenges and Main
Contributions

Industry Application

Introduction Main Part Conclusion

Motivation and
High-Level Overview

Content-Delivery-
Network

Scalable Databases
Backend-as-a-Service API:
Data, Queries, User Login, etc.Inclusion of all Web CachesAccess through HTTP

Backend Architecture
Baqend Cloud

Content-Delivery-
Network
Content-Delivery-
Network

Baqend Cloud

on

CDN

on

Backend Architecture
Baqend Cloud

Development
On Baqend

Dashboard

Create schema, configure,
browse data, etc.

CLI

Develop, deploy and test
frontend und backend code

REST & SDK

Website logic: load site,
get data, login, etc.

Baqend Speed Kit
Applying Our Caching to Existing Websites

 Redirects requests to Baqend for
faster delivery by including a snippet

 Also available as a WordPress-Plugin
 Will be released in August 2017

Cache

Bloom filter

SW.js

Websites Internet & CDN Baqend Legacy System

Legacy
Website

H2

Files, API

Purge Refresh
Handler

Media

TextPull

Domain
Experts

Config: what to intercept?

VLDB Performance with Speedkit

Ziel mit InnoRampUp
For a web without
loading times.

info@baqend.com
www.baqend.com
@Baqendcom

>10x
Faster Loads

Automatic
Scaling

Faster
Development

Contact us:

mailto:info@baqend.com
https://www.baqend.com/
https://twitter.com/Baqendcom

