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Who we are

Backend-as-a-Service Startup since 2014Research Project since 2010
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Presentation
is loading



Average: 9,3s

The Latency Problem

Loading…

-1% Revenue

-9% Visitors

-20% Traffic



State of the Art
Three Bottlenecks: Frontend, Latency and Processing

High Latency

Processing Overhead

Frontend



Netzwerk
Throughput vs. Latency

I. Grigorik, High performance browser networking. 
O’Reilly Media, 2013.



Netzwerk
Bandbreite vs. Latenz

2× Throughput = Same Load Time

½ Lantecy ≈ ½ Load Time



Solution: Global Caching
Fresh Data From Distributed Web Caches

Low Latency

Less Processing



New Caching Algorithms
Solve Consistency Problem

1 0 11 0 0 10



Typical Speedup: 15x
Impact of Global Baqend Caching

T R Y T H I S

benchmark.baqend.com
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Challenges
How to achieve globally low latency

Cache Coherence
How keep dynamic data up-to-
date in expiration-based caches?

Invalidation Detection
How detect when query
results change?

TTL Estimation
What data to cache for
how long?

1 2

3
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False-Positive

Rate:

Hash-

Functions:

With 20.000 entries and a 5% false positive rate: 11 Kbyte

Consistency: Δ-Atomicity, Read-Your-Writes, Monotonic Reads, 

Monotonic Writes, Causal Consistency

Cache Coherence
Dynamic Caching in Detail

Has Time-to-Live 
(expiration)
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InvaliDB on Storm

Server

Create
Update
Delete

Pub-Sub Pub-Sub

1 0 11 0 0 10 1 1

Fresh Bloom filter

Real-Time
Queries

(Websockets)

Fresh Caches

How to detect changes to
query results:
„Give me the most popular
products that are in stock.“

Add

Change

Remove

Invalidation Detection
Matching Queries and Updates

UpdateUpdate Database



Match!

Two-dimensional partitioning:
• by Query
• by Object
→ scales with queries and writes

Implementation:
• Apache Storm & Java
• MongoDB query language
• Pluggable engine

Subscription

Write op

17

InvaliDB
Filter Queries: Distributed Query Matching





var query = DB.Tweet.find()
.matches('text', /my filter/)
.descending('createdAt')
.offset(20)
.limit(10);

query.resultList(result => ...);

query.resultStream(result => ...);

Static Query

Real-Time Query

Programming Real-Time Queries
JavaScript API
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Learning Representations
Determining optimal query result representation

 Setting: query results can either be represented as references (id-list) or full
results (object-lists)

 Approach: Cost-based decision model that weighs expected round-trips vs
expected invalidations

 Ongoing Research: Reinforcement learning of decisions

[𝑖𝑑1, 𝑖𝑑2, 𝑖𝑑3]

Object-ListsId-Lists

[ 𝑖𝑑: 1, 𝑣𝑎𝑙: ′𝑎′ , 𝑖𝑑: 2, 𝑣𝑎𝑙: ′𝑏′ ,
{𝑖𝑑: 3, 𝑣𝑎𝑙: ′𝑐′}]

Less Invalidations Less Round-Trips



 Problem: if TTL ≫ time to next write, then it is contained in Cache Sketch 
unnecessarily long

 TTL Estimator: finds „best“ TTL and decides cacheability

 Trade-Offs:

TTL Estimation
Determining the best TTL and cacheability

Longer TTLsShorter TTLs

• higher cache-hit rates
• more invalidations

• less invalidations
• less stale reads

Verfahren: Zeit bis zum nächsten Write 𝐸[𝑇𝑤] schätzen 
(Alex Protocol, EWMA, Deep Reinforcement Learning)

Gute TTLs  optimaler Bloomfilter

TTL < TTLmin write-heavy Daten nicht cachen
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Content-Delivery-
Network

Scalable Databases
Backend-as-a-Service API:
Data, Queries, User Login, etc.Inclusion of all Web CachesAccess through HTTP

Backend Architecture
Baqend Cloud



Content-Delivery-
Network
Content-Delivery-
Network

Baqend Cloud

on

CDN

on

Backend Architecture
Baqend Cloud



Development
On Baqend

Dashboard

Create schema, configure, 
browse data, etc.

CLI

Develop, deploy and test
frontend und backend code

REST & SDK

Website logic: load site, 
get data, login, etc.





Baqend Speed Kit
Applying Our Caching to Existing Websites

 Redirects requests to Baqend for
faster delivery by including a snippet

 Also available as a WordPress-Plugin
 Will be released in August 2017

Cache

Bloom filter

SW.js

Websites Internet & CDN Baqend Legacy System

Legacy
Website

H2

Files, API

Purge Refresh 
Handler

Media

TextPull

Domain 
Experts

Config: what to intercept?



VLDB Performance with Speedkit



Ziel mit InnoRampUp
For a web without 
loading times.

info@baqend.com
www.baqend.com
@Baqendcom

>10x
Faster Loads

Automatic
Scaling

Faster 
Development

Contact us:

mailto:info@baqend.com
https://www.baqend.com/
https://twitter.com/Baqendcom

