
Felix Gessert, Florian Bücklers
{fg,fb}@baqend.com

Building a Global-Scale Multi-
Tenant Cloud Platform on AWS and
Docker: Lessons Learned

@baqendcom

Docker
Concepts

Clustering: AWS ECS vs.
Docker Swarm

Part One Part Two Part Three

Baqend & Our
Infrastructure

Presentation
is loading

Average: 9,3s

The Latency Problem

Loading…

Average: 9,3s

The Latency Problem

Loading…

-1% Revenue

100 ms

Average: 9,3s

The Latency Problem

Loading…

-1% Revenue

-9% Visitors

400 ms

Average: 9,3s

The Latency Problem

Loading…

-1% Revenue

-9% Visitors

500 ms

-20% Traffic

If perceived speed is such an
import factor

...what causes slow page load times?

State of the Art
Two bottlenecks: latency und processing

State of the Art
Two bottlenecks: latency und processing

Processing Time

State of the Art
Two bottlenecks: latency und processing

High Latency

Processing Time

Problem: Network Latency

I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

Problem: Netzwerklatenz

I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

2× Bandwidth = Same Load Time

½ Latency ≈ ½ Load Time

Low-Latency
Data is served by ubiquitous web-caches

Low-Latency
Data is served by ubiquitous web-caches

Low Latency

Low-Latency
Data is served by ubiquitous web-caches

Low Latency

Less Processing

Scaling
Scalable and highly available

5 Years
Research & Development

New Algorithms
Solve Consistency Problem

Innovation
Problem: changes cause stale data

5 Years
Research & Development

New Algorithms
Solve Consistency Problem

Innovation
Problem: changes cause stale data

5 Years
Research & Development

New Algorithms
Solve Consistency Problem

Innovation
Problem: changes cause stale data

5 Years
Research & Development

New Algorithms
Solve Consistency Problem

Stale
Data

Innovation
Problem: changes cause stale data

Innovation
Solution: Baqend proactively revalidates data

Bloom filter

update1 0 11 0 0 10 1 1

5 Years
Research & Development

New Algorithms
Solve Consistency Problem

Innovation
Solution: Baqend proactively revalidates data

Bloom filter

updateIs still fresh? 1 0 11 0 0 10 1 1

5 Years
Research & Development

New Algorithms
Solve Consistency Problem

Innovation
Solution: Baqend proactively revalidates data

F. Gessert, F. Bücklers, und N. Ritter, „ORESTES: a Scalable
Database-as-a-Service Architecture for Low Latency“, in
CloudDB 2014, 2014.

F. Gessert und F. Bücklers, „ORESTES: ein System für horizontal
skalierbaren Zugriff auf Cloud-Datenbanken“, in Informatiktage
2013, 2013.

F. Gessert, S. Friedrich, W. Wingerath, M. Schaarschmidt, und
N. Ritter, „Towards a Scalable and Unified REST API for Cloud
Data Stores“, in 44. Jahrestagung der GI, Bd. 232, S. 723–734.

F. Gessert, M. Schaarschmidt, W. Wingerath, S. Friedrich, und
N. Ritter, „The Cache Sketch: Revisiting Expiration-based
Caching in the Age of Cloud Data Management“, in BTW 2015.

F. Gessert und F. Bücklers, Performanz- und
Reaktivitätssteigerung von OODBMS vermittels der Web-
Caching-Hierarchie. Bachelorarbeit, 2010.

F. Gessert und F. Bücklers, Kohärentes Web-Caching von
Datenbankobjekten im Cloud Computing. Masterarbeit 2012.

W. Wingerath, S. Friedrich, und F. Gessert, „Who Watches the
Watchmen? On the Lack of Validation in NoSQL
Benchmarking“, in BTW 2015.

M. Schaarschmidt, F. Gessert, und N. Ritter, „Towards
Automated Polyglot Persistence“, in BTW 2015.

S. Friedrich, W. Wingerath, F. Gessert, und N. Ritter, „NoSQL
OLTP Benchmarking: A Survey“, in 44. Jahrestagung der
Gesellschaft für Informatik, 2014, Bd. 232, S. 693–704.

F. Gessert, „Skalierbare NoSQL- und Cloud-Datenbanken in
Forschung und Praxis“, BTW 2015

Page-Load Times
What impact does caching have in practice?

Page-Load Times
What impact does caching have in practice?

Page-Load Times
What impact does caching have in practice?

0
,7

s 1
,8

s 2
,8

s 3
,6

s

3
,4

s

CALIFORNIEN

0
,5

s

1
,8

s 2
,9

s

1
,5

s

1
,3

s

FRANKFURT

0
,6

s

3
,0

s

7
,2

s

5
,0

s 5
,7

s

SYDNEY

0
,5

s

2
,4

s

4
,0

s

5
,7

s

4
,7

s

TOKYO

How is this used from a

develeoper‘s
perspective?

Backend-as-a-Service

DB.Tankstellen.find()

.near("location", myLoc, 5000)

.lessThen("closing", time)

.greaterThen("opening", time)

.descending("price")

.resultList();

Baqend Architecture
Our Infrastructure

Content-Delivery-
Network

Polyglot Storage

Baqend Architecture
Our Infrastructure

Content-Delivery-
Network

Database-as-a-Service Middleware:
Caching, Transactions, Schemas,
Invalidation Detection, …

Baqend Architecture
Our Infrastructure

Content-Delivery-
Network

Standard HTTP Caching

Baqend Architecture
Our Infrastructure

Content-Delivery-
Network

Unified REST API

Baqend Architecture
Our Infrastructure

Content-Delivery-
Network

IaaS-Cloud

on

Baqend Architecture
Our Infrastructure

Content-Delivery-
Network

IaaS-Cloud

on

CDN

on

Baqend Architecture
Our Infrastructure

Content-Delivery-
Network

IaaS-Cloud

on

CDN

on

n

Orestes

1

mongos

1

1

1

ZooKeeper

BBQ Manager

Swarm Manager

1

syslog

1

mongos

 Docker Cluster

n

Node

Docker Link

HTTPS on
Random Port

metadata

data

Docker Daemon

Users
HTTP/HTTPS

Forbidden

Docker Daemon Docker Daemon

Virtual Private Cloud

1 Logging
Server

1 Management
Server

N App Servers

SSL

 Route 53, EC2, ASGs, IAM etc.
 Elastic Load Balancer: TCP Balancing for Logging
◦ Not suited for multi-tenant SSL termination: ELB cannot

dynamically route to an IP:port pair

 Redis ElastiCache: Metadata Storage
◦ Easy to use but very limited: no Redis cluster support, no

append-only files, bad snapshotting

 What we don‘t use:
◦ Beanstalk: supports Docker but needs a dedicated EC2 instance
◦ Cloudfront: useless invalidations, expensive
◦ DynamoDB: difficult to scale, very limited queries

AWS Services
Services we use

 Every tenant needs a private JVM and Node.JS process

Containerization
Why we need containers & cluster management

Baqend
Server

Customer‘s
Business
Logic

 Every tenant needs a private JVM and Node.JS process

 Provisioning new instances needs to be fast & easy:

Containerization
Why we need containers & cluster management

Baqend
Server

Customer‘s
Business
Logic

Launch
App

BBQ
Manager

Start

Configure databases,
CDN, etc.

Problem: Many Technology Choices
Emerging Frameworks and Tools

 Cluster Managers & Orchestration Tools:

Google Kubernetes Apache Mesos Docker Swarm

Problem: Many Technology Choices
Emerging Frameworks and Tools

 Cluster Managers & Orchestration Tools:

Container Cloud Platforms:

Google Kubernetes Apache Mesos Docker Swarm

Amazon Elastic
Container Service

RancherTutum Google Container
Engine

Problem: Many Technology Choices
Emerging Frameworks and Tools

 Cluster Managers & Orchestration Tools:

Container Cloud Platforms:

Google Kubernetes Apache Mesos Docker Swarm

Amazon Elastic
Container Service

RancherTutum Google Container
Engine

and many more: Azure Container
Service (Microsoft), Nomad
(HashiCorp), Diego (Cloud Foundry),
Fleet (CoreOs), ContainerShip, YARN
(Hadoop), …

Live Demo: Launching a container

Docker Concepts
What is Docker?

Source: https://docs.docker.com/engine/introduction/understanding-docker/

 The docker image can be hosted and transferred to different
hosts (Docker Registry)

 The docker image can be executed as a new container on any
machine that runs a Docker daemon

 Updates are handled by just stopping and starting a new
container

 Docker typically
isolates a single
application

 An application is built
into a Docker image
(including the OS)

 Docker runs on all common Linux distributions
 Docker can be installed from Docker’s own package

repository
 The Docker daemon can be configured by editing

/etc/default/docker
 The Docker daemon allows many useful configurations:
◦ Inter-container communication
◦ Docker remote REST API
◦ Labeling
◦ DNS configuration
◦ IP forwarding (disables internet for containers)
◦ SSL encryption for the Docker damon

Docker Architecture
How to set up a Docker host

The Dockerfile
How to build a Docker image
FROM ubuntu:latest

ENV DEBIAN_FRONTEND noninteractive

java
RUN apt-get install -y software-properties-common && \

add-apt-repository -y ppa:webupd8team/java && \
apt-get update && \
echo debconf shared/accepted-oracle-license-v1-1 select true \

| debconf-set-selections && \
apt-get install -y oracle-java8-installer

extract and install packages
ADD baqend-package*.tgz /opt
ADD config.json /opt/baqend/

EXPOSE 8080

WORKDIR /opt/baqend/

ENTRYPOINT ["java", "-classpath", "/opt/baqend/lib/*", "info.orestes.Launcher"]
CMD ["--config", "config.json"]

 Filesystem: by using multiple read-only file systems and
mounting a read-write file system on top

 Data volumes: mount additional physical volumes into
the container

 CPU: by CPU shares and core limitation
 Memory: by defining memory constraints
 Network: by using virtual networks
 System privileges: such as port binding, execution

rights, inter process communication, etc.
 Logging: by using docker logging capabilities or external

loggers (json, syslog, aws, etc...)

How a Docker container works
Isolation, performance, light-weight

 Most constraints are set when the container is started

Docker Options
Imposing constraints on containers

--add-host=[] Add a custom host-to-IP mapping (host:ip)

--cpu-shares=0 CPU shares (relative weight)

--cpu-quota=0 Limit CPU CFS (Completely Fair Scheduler) quota

-e, --env=[] Set environment variables

-l, --label=[] Set metadata on the container (e.g., --label=key=value)

--link=[] Add link to another container

-m, --memory="" Memory limit

--memory-swap="" Total memory (memory + swap), '-1' to disable swap

--name="" Assign a name to the container

--net="bridge" Connects a container to a network

'bridge': creates a new network stack on the docker bridge

'none': no networking for this container

'container:<name|id>': reuses another container network stack

'host': use the host network stack inside the container

'NETWORK': connects the container to user-created network

--oom-kill-disable=false Whether to disable OOM Killer for the container or not

-p, --publish=[] Publish a container's port(s) to the host

--read-only=false Mount the container's root filesystem as read only

--restart="no" Restart policy (no, on-failure[:max-retry], always)

-v, --volume=[] Bind mount a volume

 Docker containers can talk to each other by default

 Communication between containers can be restricted
by the daemon option: –-icc=false

 Docker containers can discover other linked containers
by their names

Docker Networking
Making containers talk to each other

EXPOSE 8080

docker run --name="orestes" orestes docker run --link="orestes" node

Can access orestes:8080

Port 8080 not published,
(can’t be accessed from host
or other containers)

 Docker containers can talk to each other by default

 Communication between containers can be restricted
by the daemon option: –-icc=false

 Docker containers can discover other linked containers
by their names

Docker Networking
Making containers talk to each other

EXPOSE 8080

docker run --name="orestes"
-p 0.0.0.0:80:8080 orestes

docker run --link="orestes" node

Can access orestes:8080

Port 8080 is published and
can be accessed on the host
port 80

 AWS provides ECS-optimized AMIs for simple deployment

 ECS manages EC2 instances by running an ECS Agent on each instance

 ECS can automatically deploy and scale new Docker containers
specified by a Task definition across the ECS Cluster

Elastic Container Service
How Amazon ECS works

 ECS Cluster

Docker Daemon

ECS Agent

Docker Daemon

ECS Agent

Docker Daemon

ECS Agent

 ECS groups containers into Tasks and deploys them
together

 A Task definition describes:
◦ The Docker images
◦ Resource requirements
◦ Environment variables
◦ Network links
◦ Data Volumes

 ECS Services can be used to keep a specified number of
Tasks running

 ECS can autoscale a Service when it is used with an ELB

ECS: Tasks and Services
Defining groups of containers

 ECS has used an outdated version of docker, now it’s 1.9, yeah!

 Tasks can now be parametrized using commandline args

 Previously only environment variables could be passed while
starting a Task

 Environment variables are exposed to linked containers, this can
be a security issue!

Limitations that AWS fixed
Old Docker, Parameterization

docker run --name="orestes"
--env SECRET=7kekfjd9e

docker run --link="orestes" node

Can access env
ORESTES_SECRET

Untrusted ProcessSecured Process

https://docs.docker.com/engine/userguide/networking/default_network/dockerlinks/#environment-variables

 ECS uses hard memory constraints (run –m) for Tasks to
schedule container placement

 This allocates a fixed amount of memory on the EC2 instance
and can’t be exceeded by the process

 This is very ugly for shared, multi tenant applications:
◦ Setting the constraint too low causes Docker to kill the process on

memory peaks

◦ Setting the value too high limits the number of containers that can be
launched per EC2 instance

 Neither Docker’s memory swapping nor unlimited memory
usage is allowed by ECS

Current Limitation: Memory Constraints
Restricting RAM consumption

 Docker has introduced a new network API, which allows
to create custom virtual networks

Current Limitation: Networking
Docker‘s new network API not supported

 Bridge Networks connect
groups of containers together
and isolate them from other
groups on the same host

 Overlay Networks use a key-
value store to connect
containers across different
host machines

Source: https://docs.docker.com/engine/userguide/networking/dockernetworks/

 Very simple setup, thanks to
the optimized ECS AMI

 Task abstraction makes it
really comfortable to start
multiple containers together

 Services ensures that the
desired count of tasks are
always up and running

 Automatically starts new EC2
instances if no capacity is left
for new containers

 Can be combined with an ELB
for a high availability setup

 Many Docker options aren’t
available

 Service Tasks can’t be
parametrized

 Running the same Services for
different tenants on the same
EC2 instance is not possible

 Only the legacy networking is
supported

 New features will always be
delayed since they must first
be implemented in ECS

 Docker Swarm is Docker’s native solution for cluster
management

 Docker Swarm uses a discovery service to manage the
shared state of the cluster

 The following backends for discovery are supported:
◦ Docker Hub (for development only)
◦ Static file
◦ etcd
◦ consul
◦ zookeeper
◦ IP list or a range pattern of IPs

Docker Swarm
A replacement for ECS

Swarm Architecture
Cluster management with Docker Swarm

 Docker Swarm Cluster

Docker Daemon

Swarm Agent

Expose 2375

Docker Daemon

Swarm Agent

Expose 2375

Docker Daemon

Swarm Agent

Expose 2375

ZooKeeper ZooKeeper
Swarm Manager

Docker Client

 The Swarm manager acts as a proxy of the Docker
Remote API
◦ All Docker run options are available in Swarm, too

 Docker Swarm can be combined with overlay networks
◦ Containers can connect to others by just using the containers

name (service discovery)

◦ Works across Docker hosts, availability zones and external
hosts

 Containers can use any other service without defining
them in a group (such as a Task)

Swarm is Docker
Fixing the shortcomings of ECS

 Docker hosts can be added and removed to the Swarm
Cluster silently

 Swarm provides an API to gather CPU usage and
memory consumption of hosts or containers

 Swarm provides no concept to scale services within
containers

Autoscaling in Swarm
Scale-out and scale-in

 Labeled Docker daemons can be used by the manager
to run specific containers only on specific hosts

 Containers can be launched:
◦ On the same host where other containers are running
◦ In a specific availability zone
◦ On hosts with special capabilities (RAM, CPU or SSD)

 The Docker daemon can restart failed containers using
a restart policy --restart="yes"

 Containers will also be restarted if the docker host
restarts

 Failed machines must be handled manually

High Availability in Swarm
Handling failures and outages

 Swarm requires that the Docker daemon is exposed via
TCP

 In most setups this will be a security issue since you can
easily get root permission on the Docker host

 Also containers can access the exposed API by default
 Therefore it is recommended to always secure the

Docker daemons on each host with SSL
 Docker supports SSL client, server and both

authentication mechanisms
 SSL server authentication is not very practical since it

requires a signed certificate for each host

Securing Swarm Hosts
Security pitfalls

Securing Swarm Hosts
Security pitfalls

 Securing a Swarm cluster requires signed SSL certificates on all
docker hosts, on the swarm manager and the docker client

 Docker Swarm Cluster

Docker Daemon
Expose 2375

Docker Daemon
Expose 2375

Docker Daemon
Expose 2375

Swarm Manager

Docker Client

Certificate
Authority

Client
Certificate

Server
Certificates

Server/Client
Certificate

Wrap-up: Docker Swarm
Pros and Cons

 Swarm is Docker, all Docker
options are available

 Labeling Docker hosts,
allows to deploy containers
on specific hosts

 Overlay Networks allow
containers to communicate
across hosts

 Service Discovery across
containers is made really
simple

 Complex setup and many
components are required
for a complete setup

 No built-in way for
autoscaling services

 Still many bugs

 The Docker Swarm API
integration into Docker is
not yet completed

Conclusions
ECS vs Swarm

 Simple Setup

 Task and Service definition
makes it easy to deploy
and update containers

 Detect failures and restart
failed tasks within services

 Integrated into other AWS
Services such as Elastic
Load Balancers and Auto
Scaling Groups

 Complex Setup

 Many configuration options
for deploying containers

 Is compatible to the Docker
API, allows to use all
Docker clients

 Supports Docker’s network
API

 No Vendor Lock-In

Ziel mit InnoRampUp

Want to try Baqend?

Download Community

Edition

Invited-Beta Cloud Instance

support@baqend.com

Baqend Cloud launching

this February

