
Felix Gessert, Norbert Ritter
gessert/ritter@informatik.uni-hamburg.de

Towards Scalable
Cloud Data Management

Outline

• Cloud Data
Management

• Cloud Database
Models

• Research Challenges

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Introduction: What are the challenges
in Cloud Data Management?

Typical Data Architecture:

Architecture

Applications

Data
Warehouse

Operative
Database

Reporting Data MiningAnalytics

D
a
ta

 M
a
n
ag

em
en

t
D
a
ta

 A
n
a
ly

ti
cs

DBaaS
The era of one-size-fits-all database systems is over

 Specialized cloud databases

Database Sweetspots

RDBMS

General-purpose
ACID transactions

Wide-Column Store

Long scans over
structured data

Parallel DWH

Aggregations/OLAP for
massive data amounts

Document Store

Deeply nested
data models

NewSQL

High throughput
relational OLTP

Key-Value Store

Large-scale
session storage

Graph Database

Graph algorithms
& queries

In-Memory KV-Store

Counting & statistics

Wide-Column Store

Massive user-
generated content

Cloud-Database Sweetspots

Amazon Elastic

MapReduce

Hadoop-as-a-Service

Big Data Analytics

Managed RDBMS

General-purpose
ACID transactions

Managed Cache

Caching and
transient storage

Azure Tables

Wide-Column Store

Very large tables

Wide-Column Store

Massive user-
generated content

Backend-as-a-Service

Small Websites
and Apps

Managed NoSQL

Full-Text Search

Google Cloud

Storage

Object Store

Massive File
Storage

Realtime BaaS

Communication and
collaboration

Cloud-Database Models

Deployment
Model

Data
Model

structured

unstructured

RDBMS
machine

image
relational

schema-
free

unstructured

NoSQL
machine

image

Analytics
machine

image

Managed
RDBMS/

DWH

Managed
NoSQL

Analytics-
as-a-

Service

RDBMS/
DWH

Service

NoSQL
Service

Analytics/
ML
APIs

Database-as-a-Service

 Research field tackling the design, implementation,
evaluation and application implications of database
systems in cloud environments:

Cloud Data Management

Application
architecture,
Data Models

Load distribution, Auto-Scaling, SLAs
Workload Management, Metering

Multi-Tenancy,
Consistency, Availability,
Query Processing, Security

Replication,
Partitioning,
Transactions,
Indexing

Protocols, APIs,
Caching

 How can database systems support novel application
architectures (e.g., single-page or real-time apps)?

 Can the functionality-performance trade-off popularized
by the NoSQL movement be turned into a tunable
runtime configuration?

 How can a DBaaS deliver low latency in face of
distributed storage and application tiers?

Open Research Questions
Performance & Latency

Database-as-a-Service

 Which consistency and transaction guarantees can be
provided across (geo-)replicated, partitioned, possibly
heterogeneous/polyglot database systems?

 How can the consistency-latency-availability trade-off be
best exposed to applications and developers?

 Can the existing methods (quorum-based, consensus-
based, master-slave, etc.) be reconciliated into a single
approach and tied to application requirements?

 How can we replace CAP by a more fine-grained and
nuanced consistency classification scheme?

Open Research Questions
Consistency & Transactionality

 How can database SLAs be guaranteed in a virtualized,
multi-tenant cloud environment?

 Can we derive Service-Level-Objectives that are easy
enough to understand and maintain to be practical?

Open Research Questions
Service-Level Agreements

SimpleDB Table-Store CP

DynamoDB Table-Store CP

Azure Tables Table-Store CP 99.9% uptime

AE/Cloud DataStore Entity-Group Store CP

S3, Az. Blob, GCS Object-Store AP 99.9% uptime (S3)

Model CAP SLAs

 How can SLAs be incorporated in autoscaling to
optimize costs and minimize SLA violations?

Open Research Questions
Service-Level Agreements

T. Lorido-Botran, J. Miguel-Alonso et al.: “Auto-scaling Techniques for
Elastic Applications in Cloud Environments”. Technical Report, 2013

Resources

Time

Expected
Load

Provisioned Resources:
• E.g. DB server instances

Actual
Load

Overprovisioning:
• SLAs met
• Excess Capacities

Underprovisioning:
• SLAs violated
• Usage maximized

 Can the data system functions of storage, search,
streaming and analytics be unified and integrated?

 Is it possible to automate, optimize and learn the best
choice of given database systems?

 How can queries and data be routed to databases, so
that SLAs & performance characteristics are met?

Open Research Questions
Poylgot Persistence

Database-as-a-Service

GET
Latency < 30 ms

Outline

• Two problems:
• Latency
• Polyglot Storage

• Vision: Orestes
Middleware

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Latency & Polyglot Storage
Two central problems

 Goal of ORESTES: Solve both problems through a scalable
cloud-database middleware

If the application is geographically
distributed, how can we guarantee
fast database access?

If one size doesn‘t fit all – how can
polyglot persistence be leveraged
on a declarative, automated basis?

Average: 9,3s

Problem I: Latency

Loading…

-1% Revenue

100 ms

-9% Visitors

400 ms500 ms

-20% Traffic

1s

-7% Conversions

If perceived speed is such an
important factor

...what causes slow page load times?

State of the art
Two bottlenecks: latency und processing

High Latency

Processing Time

Network Latency
The underlying problem of high page load times

I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

The low-latency vision
Data is served by ubiquitous web-caches

Low Latency

Less Processing

Expiration-based
Every object has a defined
Time-To-Live (TTL)

Revalidations
Allow clients and caches to
check freshness at the server

Stale
Data

The web‘s caching model
Staleness as a consequence of scalability

Research Question:
Can database services leverage the web
caching infrastructure for low latency with rich
consistency guarantees?

Problem II: Polyglot Persistence
Current best practice

Application Layer

Billing Data Nested
Application Data

Session data

Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage
Friend

network Cached data
& metrics

Recommen-
dation Engine

Research Question:

Can we automate the mapping problem?

data database

Felix Gessert, Norbert Ritter:
Polyglot Persistence. Datenbankspektrum.

Vision
Schemas can be annotated with requirements

- Write Throughput > 10,000 RPS
- Read Availability > 99.9999%
- Scans = true
- Full-Text-Search = true
- Monotonic Read = true

Schema

DBs
Tables
Fields

Vision
The Polyglot Persistence Mediator chooses the database

Application

Database
Metrics

Data and
Operations

db1 db2 db3

Polyglot Persistence
Mediator

Latency < 30ms

Annotated
Schema

The Big Picture
Implementation in ORESTES

Internet

Cache
Sketch

Reverse-Proxy
Caches

Orestes
Servers

Desktop

Mobile

Tablet
Content-Delivery-
Network

 Polyglot Storage and Low Latency are the central goals
of ORESTES

Polyglot Storage

Database-as-a-Service Middleware:
Caching, Transactions, Schemas,
Authorization, Multi-Tenancy

Standard HTTP Caching
Unified REST API

Felix Gessert, Steffen Friedrich, Wolfram Wingerath, Michael Schaarschmidt, Norbert Ritter:
Towards a Scalable and Unified REST API for Cloud Data Stores. GI-Jahrestagung 2014

Outline

• Cache Sketch
Approach
• Caching Objects
• Caching Query Results
• Continuous Queries

• Polyglot Persistence
Mediator
• Resolution
• Mediation
• Polyglot Materialized

Views

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

at
connect

Periodic
every Δ

seconds

at
transaction

begin

2 31

Invalidations,
Records

Needs Invalidation?

Needs Revalidation?

The Cache Sketch approach
Letting the client handle cache coherence

St
al

en
es

s-
M

in
im

iz
at

io
n

In
va

lid
at

io
n-

M
in

im
iz

at
io

n

Client Cache Sketch

10101010 Bloom filter

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record Keys

Report Expirations
and Writes

1 4 020

purge(obj)

hashB(oid)hashA(oid)

31 1 110
Flat(Counting Bloomfilter)

hashB(oid)hashA(oid)

Browser
Cache

CDN

1

Visually Explained
Cache Sketch in Action

𝑓 ≈ 1 − 𝑒−
𝑘𝑛
𝑚

𝑘

𝑘 = ln 2 ⋅ (
𝑛

𝑚
)

False-Positive

Rate:

Hash-

Functions:

With 20.000 distinct updates and 5% error rate: 11 KByte

 Consistency guarantee: Δ-atomicity

 Modes:
 Cached initialization: piggybacked Cache Sketch enables fast page

loads

 Bounded Staleness: application refreshes Cache Sketch in fixed
intervals

 Conflict-Avoidant Optimistic Transactions: guarantee ACID despite
cached reads

 TTL Estimator: learns and (statistically) estimates
appropriate expirations

Object Caching
Summary of Properties

Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Steffen
Friedrich, Norbert Ritter: The Cache Sketch: Revisiting Expiration-
based Caching in the Age of Cloud Data Management. BTW 2015

Felix Gessert, Florian Bucklers, Norbert Ritter:
Orestes: A scalable Database-as-a-Service architecture for low
latency. CloudDB2014@ICDE.

From Object Caching to Query Caching
Generalizing the Cache Sketch to query results

 Main challenge: when to invalidate?
◦ Objects: for every update and delete

◦ Queries: when the query result changes

How to detect query result changes in real-time?

{𝑜𝑏𝑗1, 𝑜𝑏𝑗2, 𝑜𝑏𝑗3}

Query result Q for predicate P
Add Event

Inserted or
updated so that P matches

Remove Event

Change Event

updated
so that P still matches

𝑜𝑏𝑗 ∉ 𝐐

𝑜𝑏𝑗 ∈ 𝐐

updated or deleted
so that P no longer matches
𝑜𝑏𝑗 ∈ 𝐐

Query Caching
Example

 Add, Change, Remove all entail an invalidation and
addition to the cache sketch

SELECT * FROM posts
WHERE tags CONTAINS 'b'

Query Predicate P

Cached Query Result Q

𝑜𝑏𝑗1 ∈ 𝐐

𝑜𝑏𝑗2 ∈ 𝐐

Change

Add

Remove

Architecture

ORESTES

Create
Update
Delete

Pub-Sub Pub-Sub

1 0 11 0 0 10 1 1

Fresh Cache Sketch

Continuous
Queries

(Websockets)

Fresh Caches

Polyglot Views

Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Steffen Friedrich, Norbert Ritter:
Quaestor: Scalable and Fresh Query Caching on the Web's Infrastructure. Under Submission.

Architecture
Generalizing the Cache Sketch to Query Results

DBaaS-Server DBaaS-Server DBaaS-Server

Distribution Layer

Streaming Layer

-Query & Id-lists of results
-After-Images of operations

Match-Events/Invalidations
Query State Updates

-Query
-CUD Operations

-Invalidations
-Cache Sketch

Shared: Cache Sketch
Local: Access Metrics

State: Active Queries, Id-
lists of results
PubSub: updates, queries

Matching, partitioned
by queries and objects

Streaming Layer
Query Matching

Design goals:
• Scalability
• Elasticity
• Low Latency

Optimal Query Representation

{𝑖𝑑1, 𝑖𝑑2, 𝑖𝑑3}

Object-ListsId-Lists

{ 𝑖𝑑: 1, 𝑡𝑎𝑔: ′𝑎′ , 𝑖𝑑: 2, 𝑡𝑎𝑔: ′𝑏′ ,
{𝑖𝑑: 3, 𝑡𝑎𝑔: ′𝑐′}}

Invalidated by: Add, Remove
less invalidations

Invalidated by: Add, Remove, Change

Performance: at least two
network round-trips

Performance: one round-trip
lower latency

Cost-based decision model:

𝑤
𝑐ℎ𝑎𝑛𝑔𝑒𝑠

𝑟𝑒𝑚𝑜𝑣𝑒𝑠 + 𝑎𝑑𝑑𝑠 + 𝑐ℎ𝑎𝑛𝑔𝑒𝑠
> 1 −

1

1 + 𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑖𝑧𝑒/𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

Fraction of avoided invalidations avoided round-trips

Query Lifecycle
Disitributed Capacity Management

 Matching capacity is limited
◦ Always cache hinted queries

◦ Allocate available capacity (best-effort queries)

WAIT

deactivate TRACKED

ACTIVE

UNTRACKED

activate

expire activate

If query is hinted
always add

If capacity available
greedily add and

estimate TTL
Active queries are
matched until they
are invalidated or
expired

If query is hinted
always re-add

If capacity available
greedily add, reuse

existing metrics

If query was not recently
reactivated discard its
metrics (invalidation
counters, TTLs, etc.)

Continuous Queries
Complementing Cached Queries

 Same streaming architecture can similarly notify
applications (browsers) about query result changes

 Application Pattern:

Streaming
Layer

Insert
… tag=‘b‘ …

Subscribe
tag=‘b‘

Orestes

Initial Page Load
using Cached
Queries

Critical data declaratively
specified and proactively
pushed via websockets

 Latency mostly < 15ms, scales linearly w.r.t. number of
servers and number of tables

Matching Performance
Latency of detecting invalidations

Performance

CDN

Northern California

Client MongoDBOrestes

Ireland

Setup:

Page load times with cached
initialization (simulation):

Average Latency for YCSB
Workloads A and B (real):

With Facebook‘s
cache hit rate: >2,5x
improvement

95% Read 5% Writes
5x latency
improvement

Low Latency

If the application is geographically
distributed, how can we guarantee
fast database access?

Transparent end-to-end
caching using the Cache
Sketch.

If one size doesn‘t fit all – how can
polyglot persistence be leveraged
on a declarative, automated basis?

 Goal:
◦ Extend classic workload management to polyglot persistence

◦ Leverage heterogeneous (NoSQL) databases

Tenant specifies
requirements as Service-
Level-Agreements

Find or provision a
suitable combination
of databases

Mediate data and
database operations

1. Requirements 2. Resolution 3. Mediation

Towards Automated Polyglot Persistence
Necessary steps

Michael Schaarschmidt, Felix Gessert, Norbert Ritter:
Towards Automated Polyglot Persistence. BTW 2015

Step I - Requirements
Expressing the application‘s needs

Requirements1

Database

Table

Field Field Field

1. Define
schema

Tenant

Inherits continuous
annotations

annotated

Table

Field

 Tenant annotates schema
with his requirements

Annotations
 Continuous non-functional

e.g. write latency < 15ms
 Binary functional

e.g. Atomic updates
 Binary non-functional

e.g. Read-your-writes

2. Annotate

Step II - Resolution
Finding the best database

 The Provider resolves the
requirements

 RANK: scores available
database systems

 Routing Model: defines the
optimal mapping from schema
elements to databases

Resolution2

Provider

Capabilities for
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

2a. If unsatisfiable

Either:
Refuse or
Provision new DB

2b. Generates
routing model

Routing Model
Route schema_element db
 transform db-independent to db-

specific operations

Step III - Mediation
Routing data and operations

 The PPM routes data

 Operation Rewriting:
translates from abstract to
database-specific operations

 Runtime Metrics: Latency,
availability, etc. are reported
to the resolver

 Primary Database Option: All
data periodically gets
materialized to designated
database

Mediation3

Application

Polyglot Persistence Mediator
 Uses Routing Model
 Triggers periodic

materialization
Report
metrics

1. CRUD, queries,
transactions, etc.

db1 db2 db3

2. route

Evaluation: News Article
Prototype of Polyglot Persistence Mediator in ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput on counter, article-queries

read by 1.344.222

Article
Counter

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput on counter, article-queries

Mediator

Counter updates kill performance

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput on counter, article-queries

Mediator

No powerful queries

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput on counter, article-queries

Article

ID
Title
…

Imp.

Imp.
ID

Document Sorted Set

Found Resolution

Polyglot Materialized Views
Arbitrary Queries over arbitrary databases

 Approach:
◦ Mediator emits change data stream (after-images)

◦ Streaming layer maintains registered materialized views
using pluggable query engines

◦ Serving layer stores materialized views and serves them
to applications

Streaming Layer

Mediator

Serving Layer

Query EngineQuery Engines

update

query

Outline

• Current/Future Work
• Summary
• Putting ORESTES into

practice

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

 Cache Sketch (web caching for database services):
◦ Consistent (Δ-atomic) expiration-based caching

◦ Invalidation-based caching with minimal purges

 Query Caching:
◦ Invalidations and Cache Sketch updates in real-time

◦ Cache-optimal representation of results

 Continuous & Materialized Queries
◦ Real-time updates to query results

 Polyglot Persistence Mediator:

◦ SLA-based routing of queries and data to appropriate
database systems

Summary

Team: Felix Gessert, Florian Bücklers, Hannes Kuhlmann,
Malte Lauenroth, Michael Schaarschmidt

19. August 2014

www.baqend.com

Page-Load Times
What impact does the Cache Sketch have?

0
,7

s 1
,8

s 2
,8

s 3
,6

s

3
,4

s

CALIFORNIEN

0
,5

s

1
,8

s 2
,9

s

1
,5

s

1
,3

s

FRANKFURT

0
,6

s

3
,0

s

7
,2

s

5
,0

s 5
,7

s

SYDNEY

0
,5

s

2
,4

s

4
,0

s

5
,7

s

4
,7

s

TOKYO

+156%

0,5s

1,3s

FRANKFURT

Thanks a lot!

gessert/ritter@informatik.uni-hamburg.de

baqend.com, orestes.info

