
Felix Gessert, Norbert Ritter
gessert/ritter@informatik.uni-hamburg.de

Towards Scalable
Cloud Data Management

Outline

• Cloud Data
Management

• Cloud Database
Models

• Research Challenges

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Introduction: What are the challenges
in Cloud Data Management?

Typical Data Architecture:

Architecture

Applications

Data
Warehouse

Operative
Database

Reporting Data MiningAnalytics

D
a
ta

 M
a
n
ag

em
en

t
D
a
ta

 A
n
a
ly

ti
cs

DBaaS
The era of one-size-fits-all database systems is over

 Specialized cloud databases

Database Sweetspots

RDBMS

General-purpose
ACID transactions

Wide-Column Store

Long scans over
structured data

Parallel DWH

Aggregations/OLAP for
massive data amounts

Document Store

Deeply nested
data models

NewSQL

High throughput
relational OLTP

Key-Value Store

Large-scale
session storage

Graph Database

Graph algorithms
& queries

In-Memory KV-Store

Counting & statistics

Wide-Column Store

Massive user-
generated content

Cloud-Database Sweetspots

Amazon Elastic

MapReduce

Hadoop-as-a-Service

Big Data Analytics

Managed RDBMS

General-purpose
ACID transactions

Managed Cache

Caching and
transient storage

Azure Tables

Wide-Column Store

Very large tables

Wide-Column Store

Massive user-
generated content

Backend-as-a-Service

Small Websites
and Apps

Managed NoSQL

Full-Text Search

Google Cloud

Storage

Object Store

Massive File
Storage

Realtime BaaS

Communication and
collaboration

Cloud-Database Models

Deployment
Model

Data
Model

structured

unstructured

RDBMS
machine

image
relational

schema-
free

unstructured

NoSQL
machine

image

Analytics
machine

image

Managed
RDBMS/

DWH

Managed
NoSQL

Analytics-
as-a-

Service

RDBMS/
DWH

Service

NoSQL
Service

Analytics/
ML
APIs

Database-as-a-Service

 Research field tackling the design, implementation,
evaluation and application implications of database
systems in cloud environments:

Cloud Data Management

Application
architecture,
Data Models

Load distribution, Auto-Scaling, SLAs
Workload Management, Metering

Multi-Tenancy,
Consistency, Availability,
Query Processing, Security

Replication,
Partitioning,
Transactions,
Indexing

Protocols, APIs,
Caching

 How can database systems support novel application
architectures (e.g., single-page or real-time apps)?

 Can the functionality-performance trade-off popularized
by the NoSQL movement be turned into a tunable
runtime configuration?

 How can a DBaaS deliver low latency in face of
distributed storage and application tiers?

Open Research Questions
Performance & Latency

Database-as-a-Service

 Which consistency and transaction guarantees can be
provided across (geo-)replicated, partitioned, possibly
heterogeneous/polyglot database systems?

 How can the consistency-latency-availability trade-off be
best exposed to applications and developers?

 Can the existing methods (quorum-based, consensus-
based, master-slave, etc.) be reconciliated into a single
approach and tied to application requirements?

 How can we replace CAP by a more fine-grained and
nuanced consistency classification scheme?

Open Research Questions
Consistency & Transactionality

 How can database SLAs be guaranteed in a virtualized,
multi-tenant cloud environment?

 Can we derive Service-Level-Objectives that are easy
enough to understand and maintain to be practical?

Open Research Questions
Service-Level Agreements

SimpleDB Table-Store CP

DynamoDB Table-Store CP

Azure Tables Table-Store CP 99.9% uptime

AE/Cloud DataStore Entity-Group Store CP

S3, Az. Blob, GCS Object-Store AP 99.9% uptime (S3)

Model CAP SLAs

 How can SLAs be incorporated in autoscaling to
optimize costs and minimize SLA violations?

Open Research Questions
Service-Level Agreements

T. Lorido-Botran, J. Miguel-Alonso et al.: “Auto-scaling Techniques for
Elastic Applications in Cloud Environments”. Technical Report, 2013

Resources

Time

Expected
Load

Provisioned Resources:
• E.g. DB server instances

Actual
Load

Overprovisioning:
• SLAs met
• Excess Capacities

Underprovisioning:
• SLAs violated
• Usage maximized

 Can the data system functions of storage, search,
streaming and analytics be unified and integrated?

 Is it possible to automate, optimize and learn the best
choice of given database systems?

 How can queries and data be routed to databases, so
that SLAs & performance characteristics are met?

Open Research Questions
Poylgot Persistence

Database-as-a-Service

GET
Latency < 30 ms

Outline

• Two problems:
• Latency
• Polyglot Storage

• Vision: Orestes
Middleware

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Latency & Polyglot Storage
Two central problems

 Goal of ORESTES: Solve both problems through a scalable
cloud-database middleware

If the application is geographically
distributed, how can we guarantee
fast database access?

If one size doesn‘t fit all – how can
polyglot persistence be leveraged
on a declarative, automated basis?

Average: 9,3s

Problem I: Latency

Loading…

-1% Revenue

100 ms

-9% Visitors

400 ms500 ms

-20% Traffic

1s

-7% Conversions

If perceived speed is such an
important factor

...what causes slow page load times?

State of the art
Two bottlenecks: latency und processing

High Latency

Processing Time

Network Latency
The underlying problem of high page load times

I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

The low-latency vision
Data is served by ubiquitous web-caches

Low Latency

Less Processing

Expiration-based
Every object has a defined
Time-To-Live (TTL)

Revalidations
Allow clients and caches to
check freshness at the server

Stale
Data

The web‘s caching model
Staleness as a consequence of scalability

Research Question:
Can database services leverage the web
caching infrastructure for low latency with rich
consistency guarantees?

Problem II: Polyglot Persistence
Current best practice

Application Layer

Billing Data Nested
Application Data

Session data

Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage
Friend

network Cached data
& metrics

Recommen-
dation Engine

Research Question:

Can we automate the mapping problem?

data database

Felix Gessert, Norbert Ritter:
Polyglot Persistence. Datenbankspektrum.

Vision
Schemas can be annotated with requirements

- Write Throughput > 10,000 RPS
- Read Availability > 99.9999%
- Scans = true
- Full-Text-Search = true
- Monotonic Read = true

Schema

DBs
Tables
Fields

Vision
The Polyglot Persistence Mediator chooses the database

Application

Database
Metrics

Data and
Operations

db1 db2 db3

Polyglot Persistence
Mediator

Latency < 30ms

Annotated
Schema

The Big Picture
Implementation in ORESTES

Internet

Cache
Sketch

Reverse-Proxy
Caches

Orestes
Servers

Desktop

Mobile

Tablet
Content-Delivery-
Network

 Polyglot Storage and Low Latency are the central goals
of ORESTES

Polyglot Storage

Database-as-a-Service Middleware:
Caching, Transactions, Schemas,
Authorization, Multi-Tenancy

Standard HTTP Caching
Unified REST API

Felix Gessert, Steffen Friedrich, Wolfram Wingerath, Michael Schaarschmidt, Norbert Ritter:
Towards a Scalable and Unified REST API for Cloud Data Stores. GI-Jahrestagung 2014

Outline

• Cache Sketch
Approach
• Caching Objects
• Caching Query Results
• Continuous Queries

• Polyglot Persistence
Mediator
• Resolution
• Mediation
• Polyglot Materialized

Views

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

at
connect

Periodic
every Δ

seconds

at
transaction

begin

2 31

Invalidations,
Records

Needs Invalidation?

Needs Revalidation?

The Cache Sketch approach
Letting the client handle cache coherence

St
al

en
es

s-
M

in
im

iz
at

io
n

In
va

lid
at

io
n-

M
in

im
iz

at
io

n

Client Cache Sketch

10101010 Bloom filter

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record Keys

Report Expirations
and Writes

1 4 020

purge(obj)

hashB(oid)hashA(oid)

31 1 110
Flat(Counting Bloomfilter)

hashB(oid)hashA(oid)

Browser
Cache

CDN

1

Visually Explained
Cache Sketch in Action

𝑓 ≈ 1 − 𝑒−
𝑘𝑛
𝑚

𝑘

𝑘 = ln 2 ⋅ (
𝑛

𝑚
)

False-Positive

Rate:

Hash-

Functions:

With 20.000 distinct updates and 5% error rate: 11 KByte

 Consistency guarantee: Δ-atomicity

 Modes:
 Cached initialization: piggybacked Cache Sketch enables fast page

loads

 Bounded Staleness: application refreshes Cache Sketch in fixed
intervals

 Conflict-Avoidant Optimistic Transactions: guarantee ACID despite
cached reads

 TTL Estimator: learns and (statistically) estimates
appropriate expirations

Object Caching
Summary of Properties

Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Steffen
Friedrich, Norbert Ritter: The Cache Sketch: Revisiting Expiration-
based Caching in the Age of Cloud Data Management. BTW 2015

Felix Gessert, Florian Bucklers, Norbert Ritter:
Orestes: A scalable Database-as-a-Service architecture for low
latency. CloudDB2014@ICDE.

From Object Caching to Query Caching
Generalizing the Cache Sketch to query results

 Main challenge: when to invalidate?
◦ Objects: for every update and delete

◦ Queries: when the query result changes

How to detect query result changes in real-time?

{𝑜𝑏𝑗1, 𝑜𝑏𝑗2, 𝑜𝑏𝑗3}

Query result Q for predicate P
Add Event

Inserted or
updated so that P matches

Remove Event

Change Event

updated
so that P still matches

𝑜𝑏𝑗 ∉ 𝐐

𝑜𝑏𝑗 ∈ 𝐐

updated or deleted
so that P no longer matches
𝑜𝑏𝑗 ∈ 𝐐

Query Caching
Example

 Add, Change, Remove all entail an invalidation and
addition to the cache sketch

SELECT * FROM posts
WHERE tags CONTAINS 'b'

Query Predicate P

Cached Query Result Q

𝑜𝑏𝑗1 ∈ 𝐐

𝑜𝑏𝑗2 ∈ 𝐐

Change

Add

Remove

Architecture

ORESTES

Create
Update
Delete

Pub-Sub Pub-Sub

1 0 11 0 0 10 1 1

Fresh Cache Sketch

Continuous
Queries

(Websockets)

Fresh Caches

Polyglot Views

Felix Gessert, Michael Schaarschmidt, Wolfram Wingerath, Steffen Friedrich, Norbert Ritter:
Quaestor: Scalable and Fresh Query Caching on the Web's Infrastructure. Under Submission.

Architecture
Generalizing the Cache Sketch to Query Results

DBaaS-Server DBaaS-Server DBaaS-Server

Distribution Layer

Streaming Layer

-Query & Id-lists of results
-After-Images of operations

Match-Events/Invalidations
Query State Updates

-Query
-CUD Operations

-Invalidations
-Cache Sketch

Shared: Cache Sketch
Local: Access Metrics

State: Active Queries, Id-
lists of results
PubSub: updates, queries

Matching, partitioned
by queries and objects

Streaming Layer
Query Matching

Design goals:
• Scalability
• Elasticity
• Low Latency

Optimal Query Representation

{𝑖𝑑1, 𝑖𝑑2, 𝑖𝑑3}

Object-ListsId-Lists

{ 𝑖𝑑: 1, 𝑡𝑎𝑔: ′𝑎′ , 𝑖𝑑: 2, 𝑡𝑎𝑔: ′𝑏′ ,
{𝑖𝑑: 3, 𝑡𝑎𝑔: ′𝑐′}}

Invalidated by: Add, Remove
less invalidations

Invalidated by: Add, Remove, Change

Performance: at least two
network round-trips

Performance: one round-trip
lower latency

Cost-based decision model:

𝑤
𝑐ℎ𝑎𝑛𝑔𝑒𝑠

𝑟𝑒𝑚𝑜𝑣𝑒𝑠 + 𝑎𝑑𝑑𝑠 + 𝑐ℎ𝑎𝑛𝑔𝑒𝑠
> 1 −

1

1 + 𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑖𝑧𝑒/𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

Fraction of avoided invalidations avoided round-trips

Query Lifecycle
Disitributed Capacity Management

 Matching capacity is limited
◦ Always cache hinted queries

◦ Allocate available capacity (best-effort queries)

WAIT

deactivate TRACKED

ACTIVE

UNTRACKED

activate

expire activate

If query is hinted
always add

If capacity available
greedily add and

estimate TTL
Active queries are
matched until they
are invalidated or
expired

If query is hinted
always re-add

If capacity available
greedily add, reuse

existing metrics

If query was not recently
reactivated discard its
metrics (invalidation
counters, TTLs, etc.)

Continuous Queries
Complementing Cached Queries

 Same streaming architecture can similarly notify
applications (browsers) about query result changes

 Application Pattern:

Streaming
Layer

Insert
… tag=‘b‘ …

Subscribe
tag=‘b‘

Orestes

Initial Page Load
using Cached
Queries

Critical data declaratively
specified and proactively
pushed via websockets

 Latency mostly < 15ms, scales linearly w.r.t. number of
servers and number of tables

Matching Performance
Latency of detecting invalidations

Performance

CDN

Northern California

Client MongoDBOrestes

Ireland

Setup:

Page load times with cached
initialization (simulation):

Average Latency for YCSB
Workloads A and B (real):

With Facebook‘s
cache hit rate: >2,5x
improvement

95% Read 5% Writes
5x latency
improvement

Low Latency

If the application is geographically
distributed, how can we guarantee
fast database access?

Transparent end-to-end
caching using the Cache
Sketch.

If one size doesn‘t fit all – how can
polyglot persistence be leveraged
on a declarative, automated basis?

 Goal:
◦ Extend classic workload management to polyglot persistence

◦ Leverage heterogeneous (NoSQL) databases

Tenant specifies
requirements as Service-
Level-Agreements

Find or provision a
suitable combination
of databases

Mediate data and
database operations

1. Requirements 2. Resolution 3. Mediation

Towards Automated Polyglot Persistence
Necessary steps

Michael Schaarschmidt, Felix Gessert, Norbert Ritter:
Towards Automated Polyglot Persistence. BTW 2015

Step I - Requirements
Expressing the application‘s needs

Requirements1

Database

Table

Field Field Field

1. Define
schema

Tenant

Inherits continuous
annotations

annotated

Table

Field

 Tenant annotates schema
with his requirements

Annotations
 Continuous non-functional

e.g. write latency < 15ms
 Binary functional

e.g. Atomic updates
 Binary non-functional

e.g. Read-your-writes

2. Annotate

Step II - Resolution
Finding the best database

 The Provider resolves the
requirements

 RANK: scores available
database systems

 Routing Model: defines the
optimal mapping from schema
elements to databases

Resolution2

Provider

Capabilities for
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

2a. If unsatisfiable

Either:
Refuse or
Provision new DB

2b. Generates
routing model

Routing Model
Route schema_element db
 transform db-independent to db-

specific operations

Step III - Mediation
Routing data and operations

 The PPM routes data

 Operation Rewriting:
translates from abstract to
database-specific operations

 Runtime Metrics: Latency,
availability, etc. are reported
to the resolver

 Primary Database Option: All
data periodically gets
materialized to designated
database

Mediation3

Application

Polyglot Persistence Mediator
 Uses Routing Model
 Triggers periodic

materialization
Report
metrics

1. CRUD, queries,
transactions, etc.

db1 db2 db3

2. route

Evaluation: News Article
Prototype of Polyglot Persistence Mediator in ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput on counter, article-queries

read by 1.344.222

Article
Counter

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput on counter, article-queries

Mediator

Counter updates kill performance

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput on counter, article-queries

Mediator

No powerful queries

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput on counter, article-queries

Article

ID
Title
…

Imp.

Imp.
ID

Document Sorted Set

Found Resolution

Polyglot Materialized Views
Arbitrary Queries over arbitrary databases

 Approach:
◦ Mediator emits change data stream (after-images)

◦ Streaming layer maintains registered materialized views
using pluggable query engines

◦ Serving layer stores materialized views and serves them
to applications

Streaming Layer

Mediator

Serving Layer

Query EngineQuery Engines

update

query

Outline

• Current/Future Work
• Summary
• Putting ORESTES into

practice

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

 Cache Sketch (web caching for database services):
◦ Consistent (Δ-atomic) expiration-based caching

◦ Invalidation-based caching with minimal purges

 Query Caching:
◦ Invalidations and Cache Sketch updates in real-time

◦ Cache-optimal representation of results

 Continuous & Materialized Queries
◦ Real-time updates to query results

 Polyglot Persistence Mediator:

◦ SLA-based routing of queries and data to appropriate
database systems

Summary

Team: Felix Gessert, Florian Bücklers, Hannes Kuhlmann,
Malte Lauenroth, Michael Schaarschmidt

19. August 2014

www.baqend.com

Page-Load Times
What impact does the Cache Sketch have?

0
,7

s 1
,8

s 2
,8

s 3
,6

s

3
,4

s

CALIFORNIEN

0
,5

s

1
,8

s 2
,9

s

1
,5

s

1
,3

s

FRANKFURT

0
,6

s

3
,0

s

7
,2

s

5
,0

s 5
,7

s

SYDNEY

0
,5

s

2
,4

s

4
,0

s

5
,7

s

4
,7

s

TOKYO

+156%

0,5s

1,3s

FRANKFURT

Thanks a lot!

gessert/ritter@informatik.uni-hamburg.de

baqend.com, orestes.info

