
Norbert Ritter, Felix Gessert

{ritter,gessert}@informatik.uni-hamburg.de

Tutorial on Scalable Cloud-Databases

in Research and Practice

Outline

• Overview

• The New Field Cloud

Data Management

• Cloud Database

Models

• Research Challenges

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Introduction: Which classes of

cloud databases are there?

Infrastructure-as-a-Service

Platform-as-a-Service

… Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes
Google F1

DynamoDB

Managed NoSQL
Databases

Managed
RDBMS

Backend-as-a-
Service

Cloud-Deployment
of DBMSs

Cloud-only
DBaaS-Systems

BigQuery

EMR

Analytics-as-
a-Service

Cloud Databases

Typical Data Architecture:

Architecture

Applications

Data

Warehouse

Operative

Database

Reporting Data Mining Analytics

D
at

a
M

an
ag

em
en

t
D
at

a
A
n
al

yt
ic
s

DBaaS
The era of one-size-fits-all database systems is over

 Specialized cloud databases

Database Sweetspots

RDBMS

General-purpose

ACID transactions

Wide-Column Store

Long scans over

structured data

Parallel DWH

Aggregations/OLAP for

massive data amounts

Document Store

Deeply nested

data models

NewSQL

High throughput

relational OLTP

Key-Value Store

Large-scale

session storage

Graph Database

Graph algorithms

& queries

In-Memory KV-Store

Counting & statistics

Wide-Column Store

Massive user-

generated content

Cloud-Database Sweetspots

Amazon Elastic

MapReduce

Hadoop-as-a-Service

Big Data Analytics

Managed RDBMS

General-purpose

ACID transactions

Managed Cache

Caching and

transient storage

Azure Tables

Wide-Column Store

Very large tables

Wide-Column Store

Massive user-

generated content

Backend-as-a-Service

Small Websites

and Apps

Managed NoSQL

Full-Text Search

Google Cloud

Storage

Object Store

Massive File

Storage

Realtime BaaS

Communication and

collaboration

 New field tackling the design, implementation,

evaluation and application implications of database

systems in cloud environments:

Cloud Data Management

Application

architecture,

Data Models

Load distribution, Auto-Scaling, SLAs

Workload Management, Metering

Multi-Tenancy,

Consistency, Availability,

Query Processing, Security

Replication,

Partitioning,

Transactions,

Indexing

Protocols, APIs,

Caching

Cloud-Database Models

Deployment

Model

Data

Model

structured

unstructured

RDBMS

machine

image
relational

schema-

free

unstructured

NoSQL

machine

image

Analytics

machine

image

Managed

RDBMS/

DWH

Managed

NoSQL

Analytics-

as-a-

Service

RDBMS/

DWH

Service

NoSQL

Service

Analytics/

ML

APIs

Database-as-a-Service

Cloud-Deployed Database
 Database-image provisioned in IaaS/PaaS-cloud

IaaS-Cloud

IaaS/PaaS deployment of

database system

Does not solve:
Provisioning, Backups, Security,

Scaling, Elasticity, Performance

Tuning, Failover, Replication, ...

Managed RDBMS/DWH/NoSQL DB
 Cloud-hosted database

IaaS-Cloud

RDBMS DWH NoSQL DB

DBaaS-Provider

Provisioning, Backups, Security,

Scaling, Elasticity, Performance

Tuning, Failover, Replication, ...

Amazon Redshift

SQL Azure

Google

Cloud SQL

R
D

B
M

S

N
o

S
Q

L D
B

D

W
H

Proprietary Cloud Database
 Designed for and deployed in vendor-specific cloud environment

Cloud

Black-box system

Managed by

Cloud Provider

Proǀider͚s A
P

I

Amazon

SimpleDB

Google Cloud

Storage

Azure Blob

Storage

Google Cloud

Datastore
Azure Tables

Openstack

Swift

Database.com

BigTable, Megastore, Spanner, F1, Dynamo,

PNuts, Relational Cloud, …

D
a

ta
b

a
se

O

b
je

ct S
to

re

Analytics-as-a-Service
 Analytic frameworks and machine learning with service APIs

Cloud

Analytics Cluster

Provisioning,

Data Ingest

Azure

HDInsight

Google

BigQuery

Google

Prediction API

Amazon Elastic

MapReduce

A
n

a
ly

tics
M

L

Backend-as-a-Service
 DBaaS with embedded custom and predefined application logic

IaaS-Cloud

Backend API

Service-Layer

Data API

Authentication,

Users, Validation,etc.

Maps to (different)

databases

(m
o

b
ile

) B
a

a
S

AppCelerator

Cloud

Pricing Models
Pay-per-use and plan-based

Usage

Account

Pay-per-use
Parameters: Network, Bandwidth,

Storage, CPU, Requests, etc.

Payment: Pre-Paid, Post-Paid

Variants: On-Demand, Auction, Reserved

End of

month

Plan-based
Parameters: Allocated Plan (e.g.

2 instances + X GB storage)
e.g. DynamoDB

e.g. Compose

Database-as-a-Service
Approaches to Multi-Tenancy

T. Kiefer, W. Lehner ͞Priǀate table database virtualization for dbaas͟
UCC, 2011

Private OS

VM

Hardware Resources

Database Process

Database

Schema

Private Process/DB Private Schema

VM

Hardware Resources

Database Process

Database

Schema

VM

Hardware Resources

Database Process

Database

Schema

Shared Schema

VM

Hardware Resources

Database Process

Database

Schema

Virtual Schema

e.g. Amazon RDS e.g. Compose e.g. Google DataStore Most SaaS Apps

Multi-Tenancy: Trade-Offs

W. Lehner, U. Sattler ͞Weď-sĐale Data MaŶageŵeŶt for the Cloud͟
Springer, 2013

Private OS

Private

Process/DB

Private Schema

Shared Schema

App.

 indep.
Isolation

Ressource

Util.

Maintenance,

Provisioning

Authentication & Authorization
Checking Permissions and Indentity

Internal Schemes External Identity

Provider

Federated Identity

(Single Sign On)

e.g. Amazon IAM e.g. OpenID e.g. SAML

User-based Access

Control

Role-based Access

Control

Policies

e.g. Amazon S3 ACLs e.g. Amazon IAM e.g. XACML

Database-a-
a-Service

Authentication

Authorization

API

Authenticate/Login

Token

Authenticated Request

Response

Service Level Agreements (SLAs)
Specification of Application/Tenant Requirements

SLA

Legal Part

1. Fees

2. Penalties

Technical Part

1. SLO

2. SLO

3. SLO

Service Level Objectives:

• Availability

• Durability

• Consistency/Staleness

• Query Response Time

Functional Service Level Objectives

◦ Guarantee a „feature͞

◦ Determined by database system

◦ Examples: transactions, join

Non-Functional Service Level Objectives

◦ Guarantee a certain quality of service (QoS)

◦ Determined by database system and service provider

◦ Examples:

 Continuous: response time (latency), throughput

 Binary: Elasticity, Read-your-writes

Service Level Agreements
Expressing application requirements

Utility expresses „value͞ of a continuous non-functional

requirement: ௨݂௧𝑖௟𝑖௧𝑦 ݉݁𝑡𝑟𝑖ܿ → [Ͳ,ͳ]

Service Level Objects
Making SLOs measurable through utilities

Typical approach:

Workload Management
Guaranteeing SLAs

W. Lehner, U. Sattler ͞Weď-sĐale Data MaŶageŵeŶt for the Cloud͟
Springer, 2013

Maximize:

Goal: minimize penalty and

resource costs

Resource & Capacity Planning
From a DBaaS proǀider͚s perspective

T. Lorido-Botran, J. Miguel-AloŶso et al.: ͞Auto-scaling Techniques for

Elastic Applications in Cloud EŶǀiroŶŵeŶts͟. TeĐhŶiĐal Report, 2013

Resources

Time

Expected

Load

Provisioned Resources:

• #No of Shard- or Replica

servers

• Computing, Storage,

Network Capacities

Actual

Load

Overprovisioning:

• SLAs met

• Excess Capacities

Underprovisioning:

• SLAs violated

• Usage maximized

SimpleDB
Table-Store

(NoSQL Service)

CP

Dynamo-DB
Table-Store

(NoSQL Service)

CP

Azure Tables
Table-Store

(NoSQL Service)

CP 99.9%

uptime

AE/Cloud DataStore
Entity-Group

Store

(NoSQL Service)

CP

S3, Az. Blob, GCS
Object-Store

(NoSQL Service)

AP 99.9%

uptime

(S3)

SLAs in the wild

Model CAP SLAs

Most DBaaS systems offer no SLAs, or

only a a simple uptime guarantee

 Service-Level Agreements

◦ How can SLAs be guaranteed in a virtualized, multi-tenant

cloud environment?

 Consistency

◦ Which consistency guarantees can be provided in a geo-

replicated system without sacrificing availability?

 Performance & Latency

◦ How can a DBaaS deliver low latency in face of distributed

storage and application tiers?

 Transactions

◦ Can ACID transactions be aligned with NoSQL and scalability?

Open Research Questions
in Cloud Data Management

www.scdm2015.com

Location : Santa Clara

Submission Deadline: August 30

Outline

• Two problems:

• Latency

• Polyglot Storage

• Vision: Orestes

Middleware

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Latency & Polyglot Storage
Two central problems

 Goal of ORESTES: Solve both problems through a scalable

cloud-database middleware

If the application is geographically

distributed, how can we guarantee

fast database access?

If one size doesn‘t fit all – how can

polyglot persistence be leveraged

on a declarative, automated basis?

Average: 9,3s

Problem I: Latency

Loading…

-1% Revenue

100 ms

-9% Visitors

400 ms 500 ms

-20% Traffic

1s

-7% Conversions

If perceived speed is such an

import factor

...what causes slow page load times?

State of the art
Two bottlenecks: latency und processing

High Latency

Processing Time

Network Latency
The underlying problem of high page load times

I. Grigorik, High performance browser networking.

O͛Reilly Media, 2013.

The low-latency vision
Data is served by ubiquitous web-caches

Low Latency

Less Processing

Expiration-based
Every object has a defined

Time-To-Live (TTL)

Revalidations
Allow clients and caches to

check freshness at the server

Stale

Data

The ǁeď͚s caching model
Staleness as a consequence of scalability

Research Question:
Can database services leverage the web

caching infrastructure for low latency with rich

consistency guarantees?

Problem II: Polyglot Persistence
Current best practice

Application Layer

Billing Data Nested

Application Data
Session data

Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage
Friend

network
Cached data

& metrics

Recommen-

dation Engine

Research Question:

Can we automate the mapping problem?

data database

Vision
Schemas can be annotated with requirements

- Write Throughput > 10,000 RPS

- Read Availability > 99.9999%

- Scans = true

- Full-Text-Search = true

- Monotonic Read = true

Schema

DBs

Tables

Fields

Vision
The Polyglot Persistence Mediator chooses the database

Application

Database

Metrics

Data and

Operations

db1 db2 db3

Polyglot Persistence

Mediator

Latency < 30ms

Annotated

Schema

The Big Picture
Implementation in ORESTES

Internet

Cache

Sketch

Reverse-Proxy

Caches

Orestes

Servers

Desktop

Mobile

Tablet
Content-Delivery-

Network

 Polyglot Storage and Low Latency are the central goals

of ORESTES
Polyglot Storage

Database-as-a-Service
Middleware:
Caching, Transactions, Schemas,
Authorization, Multi-Tenancy Standard HTTP Caching

Unified REST
API

Outline

• Cache Sketch

Approach

• Caching Arbitrary

Data

• Predicting TTLs

• Polyglot Persistence

Mediator

• SLA-Approach

• Database

Selection

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Client

Expiration-

based Caches

Invalidation-

based Caches

Request

Path

Server/DB

Cache

Hits

Browser Caches,

Forward Proxies,

ISP Caches

Content Delivery

Networks,

Reverse Proxies

Expiration-based Caches:

 An object x is considered

fresh for TTLx seconds

 The server assigns TTLs

for each object

Invalidation-based Caches:

 Expose object eviction

operation to the server

Web Caching Concepts
Invalidation- and expiration-based caches

Client

Expiration-

based Caches

Invalidation-

based Caches

Request

Path

Server/DB

Cache

Hits

Browser Caches,

Forward Proxies,

ISP Caches

Content Delivery

Networks,

Reverse Proxies

at

connect

Periodic

every Δ

seconds

at

transaction

begin

2 31

Invalidations,

Records

Needs Invalidation?

Needs Revalidation?

The Cache Sketch approach
Letting the client handle cache coherence

St
al

en
es

s-
M

in
im

iz
at

io
n

In
va

lid
at

io
n-

M
in

im
iz

at
io

n

Client Cache Sketch

10101010 Bloom filter

Server Cache Sketch

10201040

10101010

Counting

Bloom Filter

Non-expired

Record Keys
Report Expirations

and Writes

The End-to-End Path of Requests
The Caching Hierarchy

Client-

(Browser-)

Cache

Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy Cache

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

DB.posts.get(id) JavaScript GET /db/posts/{id} HTTP

Updated by

Cache Sketch

Updated by the

server

Cache-Hit: Return Object

Cache-Miss or Revalidation:

Forward Request
Return record from

DB with caching TTL

Low Latency
Reduced

Database Load
Flash-Crowd
Protection

Higher
Availability

 Let ct be the client Cache Sketch generated at time t, containing

the key keyx of every record x that was written before it expired

in all caches, i.e. every x for which holds:

The Client Cache Sketch

∃ 𝑟ሺݔ, 𝑡𝑟 , 𝑇𝑇𝐿ሻ, ݓ ,ݔ 𝑡𝑤 ∶ 𝑡𝑟 + 𝑇𝑇𝐿 > 𝑡 > 𝑡𝑤 > 𝑡𝑟

k hash functions m Bloom filter bits

1 0 0 1 1 0 1 1

h1

hk

...keyfind(key)

Client Cache Sketch

Bits = 1

no

yes

GET request

Revalidation

Cache

Hit

Miss

key

key

1 4 0 2 0

purge(obj)

hashB(oid) hashA(oid)

3 1 1 1 1 0
Flat(Counting Bloomfilter)

hashB(oid) hashA(oid)

Browser

Cache
CDN

1

 Solution: Cached Initialization

◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused

without degraded consistency

 Slow initial page loads 1

݂ ≈ ͳ − ݁−௞௡௠ ௞
 ݇ = ln ʹ ⋅ ሺ ௡௠ሻ

False-Positive
Rate:

Hash-
Functions:

With 20.000 distinct updates and 5% error rate: 11 KByte

 Solution: Δ-Bounded Staleness

◦ Clients refresh the Cache Sketch so its age never exceeds Δ → Consistency guarantee: Δ-atomicity

 Slow CRUD performance

Client
Expiration-

based Caches

Invalidation-

based Caches
Server

Cache Sketch ct Query Cache

Sketch

fresh records

Revalidate record & Refresh Cache Sketch

Cache Hits

Fresh record & new Cache Sketch

-time t

-time t + Δ

2

 High Abort Rates in OCC

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

Reads

Writes
2

Writes
(Hidden)

validation 4

5Writes (Public)

Read all

prevent conflicting
validations

 Solution: Conflict-Avoidant Optimistic Transactions

◦ Cache Sketch fetched with transaction begin

◦ Cached reads → Shorter transaction duration → less aborts

3

Committed OR aborted + stale objects

Commit: read- & write-set versions
3

 Problem: if TTL ≫ time to next write, then it is

contained in Cache Sketch unnecessarily long

 TTL Estimator: finds „best͞ TTL

 Trade-Off:

TTL Estimation
Determining the cache expiration

Longer TTLs Shorter TTLs

• Higher cache-hit rates

• more invalidations

• less invalidations

• less stale reads

Performance

CDN

Northern California

Client MongoDBOrestes

Ireland

Setup:

Page load times with cached

initialization (simulation):

Average Latency for YCSB

Workloads A and B (real):

With FaĐeďook‘s
cache hit rate: >2,5x

improvement

95% Read 5% Writes 

5x latency

improvement

Low Latency

If the application is geographically

distributed, how can we guarantee

fast database access?

Transparent end-to-end

caching using the Cache

Sketch.

If one size doesn‘t fit all – how can

polyglot persistence be leveraged

on a declarative, automated basis?

 Goal:

◦ Extend classic workload management to polyglot persistence

◦ Leverage hetereogeneous (NoSQL) databases

Tenant specifies

requirements as Service-

Level-Agreements

Find or provision a

suitable combination

of databases

Mediate data and

database operations

1. Requirements 2. Resolution 3. Mediation

Towards Automated Polyglot Persistence
Necessary steps

Step I - Requirements
Expressing the appliĐatioŶ͚s needs

Requirements1

Database

Table

Field Field Field

1. Define

schema

Tenant

Inherits continuous

annotations

annotated

Table

Field

 Tenant annotates schema

with his requirements

Annotations

 Continuous non-functional

e.g. write latency < 15ms

 Binary functional

e.g. Atomic updates

 Binary non-functional

e.g. Read-your-writes

2. Annotate

Step II - Resolution
Finding the best database

 The Provider resolves the

requirements

 RANK: scores available

database systems

 Routing Model: defines the

optimal mapping from schema

elements to databases

Resolution2

Provider

Capabilities for

available DBs

1. Find optimal

RANK(schema_root, DBs)

through recursive descent

using annotated schema and metrics

2a. If unsatisfiable

Either:

Refuse or

Provision new DB

2b. Generates

routing model

Routing Model

Route schema_element db

 transform db-independent to db-

specific operations

Step II - Resolution
Ranking algorithm by example

Customers
Table

ECommerceDB
database

ShoppingBasket
List<String>

UserName
String

Lineariza-

bility

Availability

Read latency

Schema Annotations

No annotation 

recursive descent to child

RANK Algorithm

Binary requirement 

1. Exclude DBs that do not

support it

2. Recursive descent

Continuous requirement  ∀ databases calculate ܾ݀ → ௨݂௧𝑖௟𝑖௧𝑦ሺܾ݀. ݈ܽ𝑡݁݊ܿݕሻ ܾ݀ → ௨݂௧𝑖௟𝑖௧𝑦ሺܾ݀. ሻݕ𝑖݈ܾܽ𝑖݈𝑖𝑡ܽݒܽ

DBs = { MongoDB, Riak,

Cassandra, CouchDB, Redis,

MySQL, S3, Hbase }

Database Availability

MongoDB 99%0.8

Redis 95%0.05

MySQL 94% 0.04

HBase 99.9%0.9

Latency

10ms1

1ms1

40ms0.2

50ms0.1

DBs = { MongoDB, Riak,

Cassandra, CouchDB, Redis,

MySQL, S3, Hbase }

Step II - Resolution
Ranking algorithm by example

Customers
Table

ECommerceDB
database

ShoppingBasket
List<String>

UserName
String

Lineariza-

bility

Availability

Read latency

Schema Annotations RANK Algorithm

Binary requirement 

1. Exclude DBs that do not

support it

2. Recursive descent

3. Pick DB with best total

score and add it to

routing model

DB Score

MongoDB 0.9

Redis 0.525

MySQL 0.12

HBase 0.5

Routing Model:

Customers  MongoDB

Step III - Mediation
Routing data and operations

 The PPM routes data

 Operation Rewriting:

translates from abstract to

database-specific operations

 Runtime Metrics: Latency,

availability, etc. are reported

to the resolver

 Primary Database Option: All

data periodically gets

materialized to designated

database

Mediation3

Application

Polyglot Persistence Mediator

 Uses Routing Model

 Triggers periodic

materialization
Report

metrics

1. CRUD, queries,

transactions, etc.

db1 db2 db3

2. route

Evaluation: News Article
Prototype of Polyglot Persistence Mediator in ORESTES

Scenario: news articles with impression counts

Objectives: low-latency top-k queries, high-

throughput counts, article-queries

read by 1.344.222

Article
Counter

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts

Objectives: low-latency top-k queries, high-

throughput counts, article-queries

Mediator

Counter updates kill performance

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts

Objectives: low-latency top-k queries, high-

throughput counts, article-queries

Mediator

No powerful queries

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts

Objectives: low-latency top-k queries, high-

throughput counts, article-queries

Article

ID

Title

…

Imp.

Imp.

ID

Document Sorted Set

Found Resolution

Outline

• Current/Future Work

• Summary

• Putting ORESTES into

practice

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Outlook: Real-Time
Combining Query Caching,

Continuous Queries, Polyglot Queries

ORESTES

Create

Update

Delete

Pub-Sub Pub-Sub

1 0 1 1 0 0 1 0 1 1

Fresh Cache Sketch

Continuous

Queries

(Websockets)

Fresh Caches

Polyglot Views

 Cache Sketch: web caching for database services

◦ Consistent (Δ-atomic) expiration-based caching

◦ Invalidation-based caching with minimal purges

◦ Bloom filter of stale objects & TTL Estimation

 Polyglot Persistence Mediator:

1. SLA-annotated Schemas

2. Score DBs and choose best

3. Route data and operations

Summary

Requirements Resolution Mediation

Team: Felix Gessert, Florian Bücklers, Hannes Kuhlmann,

Malte Lauenroth, Michael Schaarschmidt

19. August 2014

Page-Load Times
What impact does the Cache Sketch have?

0
,7

s 1
,8

s 2
,8

s 3
,6

s

3
,4

s

CALIFORNIEN

0
,5

s

1
,8

s 2
,9

s

1
,5

s

1
,3

s

FRANKFURT

0
,6

s

3
,0

s

7
,2

s

5
,0

s 5
,7

s

SYDNEY

0
,5

s

2
,4

s

4
,0

s

5
,7

s

4
,7

s

TOKYO

+156%

0,5s

[WE

RT]

FRANKFURT

Backend-as-a-Service
Tutorial on the BaaS paradigm from app perspective

www.baqend.com

Thank you

ritter,gessert@informatik.uni-hamburg.de

orestes.info, baqend.com

