Tutorial on Scalable Cloud-Databases
in Research and Practice

Norbert Ritter, Felix Gessert
{ritter,gessert}@informatik.uni-hamburg.de



Outline

{t

0 B

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Overview

The New Field Cloud
Data Management
Cloud Database
Models

Research Challenges



Introduction: Which c
cloud databases are t

asses of ‘

nere’?




Cloud Databases

Managed NoSQL  Cloud-only Analytics-as
~as-a- Datab DBaaS -Systems e
Backend-as-a aravases Baas -5ystem a-Service

Service \ l/ %

:
L Google F1

SQL Azare

Amazon RDS
/

Managed Q 20)

RDBMS
4] heroku

@ Eg Infrastructure-as-a-Service

amazon
webservices®

Database-as-a-Service

Platform-as-a-Service

K Cloud -Deployment
of DBMSs



Architecture
Typical Data Architecture:

Analytics Reporting

The era of one-size-fits-all database systems is over
— Specialized cloud databases

2
S

S Applications

ay PP

lytics



Database Sweetspots

RDBMS

General-purpose
ACID transactions

T 1\,
®

HBASE
Wide-Column Store

Long scans over
structured data

?® Neosj

@ the graph database

Graph Database

Graph algorithms
& queries

"7 Greenplum

Parallel DWH

Aggregations/OLAP for
massive data amounts

. mongoDDB

Document Store

Deeply nested
data models

& redis

In-Memory KV-Store
Counting & statistics

Volt

NewSQL

High throughput
relational OLTP

sriak
Key-Value Store
Large-scale

session storage

Jius®
cassandra

Wide-Column Store

Massive user-
generated content



Cloud-Database Sweetspots

S Firebase

Realtime BaaS

Communication and
collaboration

\ Azure Tables

Wide-Column Store

Very large tables

Managed NoSQL
Full-Text Search

. Amazon RDS

Managed RDBMS

General-purpose
ACID transactions

Amazon
DynamoDB

Wide-Column Store

Massive user-
generated content

Google Cloud
Storage

Object Store

Massive File
Storage

Amazon
"% ElastiCache

Managed Cache

Caching and
transient storage

Backend-as-a-Service

Small Websites
and Apps

I Amazon Elastic
&% MapReduce

Hadoop-as-a-Service

Big Data Analytics



Cloud Data Management

New field tackling the design, implementation,
evaluation and application implications of database
systems in cloud environments:

Protocols, APIs, Load distribution, Auto-Scaling, SLAs Replication,
Caching Workload Management, Metering Partitioning,
_____________ Transactions,
N Indexing
\.- N
-
| -—
.
—
-
* -
Application Multi-Tenancy,
architecture, Consistency, Availability,

Data Models Query Processing, Security



Cloud-Database Models

Data
Model
unstructured 1
Analytics Analytics- Analytics/
unstructured — machine as-a- ML
image Service APIs
N 7\ I
NoSQL ! |
schema- __ machine ! Managed NOS_QL |
free . I NoSQL Service I
image | :
| : Database-as-a-Service
RDBMS | Managed RDBMS/ |
relational — machine ' RDBMS/ DWH :
image i DWH Service i
structured bommmommm oo mmm s s s s . Deployment
GO o @® e® LA e0
RUNSS @ o o 09
\ g W AR "
v O %%\Q’b \c\o o



Cloud-Deployed Database

Database-image provisioned in laaS/PaaS-cloud

- o

-

laaS/PaaS deployment of
database system

{ ]
HBASE [l HvperTABLE
Cassandra

Wide Column

rrrrr

RAVENDS Graph

;7 Neogj

- e e e e e e e e e e e e e e e e e e e e =
e o o e o e e e e e e R R e e e s e = = = ==

B N — o Does not solve:
Provisioning, Backups, Security,
\ ) Scaling, Elasticity, Performance
N JaaS-Cloud // Tuning, Failover, Replication, ...

S s e e e e e e e = = = = = = = = = = === ===



— e e e o e o e o e e o e e o e = e = = e == =

Managed RDBMS/DWH/NoSQL DB

Cloud-hosted database

. Amazon RDS f| SQL Azure

-

DB

ENTERPRISE

Provisionin, clsbgas, Securi e

Scaling, Ela_*%_y'P&ffdrmance

SINGdY

Tuning, Failover. Renblication, ...

’ Amazon -
< MONQOH
“@” ElastiCache
@ mongolab = Cloudant
4 an IBM?® Company

@ instaclustr
m Iris Couch

= e o e e o e = = e = = = == =

RDBMS DWH NoSQL DB

dd TOSON

T -AmazonRedshift

HMd




Proprietary Cloud Database

Designed for and deployed in vendor-specific cloud environment

e e e e e e e e e e e e e e e e e

-

/ ’ \\ Amazon Amazon
\ SimpleDB DynamoDB
- Google Cloud -:-- Azure Tables
Black-box system @ Datastore BH

wleforce - Database.com

BigTable, Megastore, Spanner, F1, Dynamo,
PNuts, Relational Cloud, ...

-
-
o
=.
Q
@D
©
m\
>
9

osSeqgele(

Managed by
Cloud Provider

= Azure Blob n Openstack

ww Storage Swift

A / Amazon S3 Google Cloud
S Cloud // Storage

Nﬁa

e o o e o e e s R e e e e R e e e e s e = = = ==

—— = = =

e e e e e e e e e e e e e e e e e e e e e e e = = = =

9401S 10390




Analytics-as-a-Service

Analytic frameworks and machine learning with service APIs

-

_ e e e = = = = = = = == =

Provisioning,
Data Ingest

—— e = = = = = =

,,,,,,,,,,,,,,,,,,,,,,,,,,,

- o

—_ =

e o o e o e e s R e e e e R e e e e s e = = = ==

Amazon Elastic

il z

MapReduce -

&

<

o i

_“-'I; Azure P
w7 HDInsight
Google
BigQuery

<

—

Google
Prediction API




Backend-as-a-Service

DBaaS with embedded custom and predef

e e e e e e e e e e e e e e e

Authentication,
Users, Validation,etc.

Maps to (differer
databases

ined application logic

& Firebase © Golnstant
1t)
Meteorsr=vew

e AppCelerator
Cloud

Seegq (a|iqow)




Pricing Models

Pay-per-use and plan-based

Plan-based e.g. Lompose

Pay-per-1 Pgrameters: Allocated Plan (e.g.e_g. DynamoDB
Parameter 2 iNstances + X GB storage)

Storage, CPU, Requests, etc.
Payment: Pre-Paid, Post-Paid
Variants: On-Demand, Auction, Reserved

Account

s
I

Usage




Database-as-a-Service
Approaches to Multi-Tenancy

Private OS Private Process/DB Private Schema Shared Schema
Virtual Schema
Schema Schema Schema Schema
Database Database Database Database
Database Process Database Process i— al Database Process Database Process
VM VM VM VM
Hardware Resources Hardware Resources Hardware Resources Hardware Resources
e.g. Amazon RDS e.g. Compose e.g. Google DataStore Most SaaS Apps

T. Kiefer, W. Lehner “Private table database virtualization for dbaas”
UCC, 2011



Multi-Tenancy: Trade-Offs

App. Ressource solation Maintenance,
indep. Util. Provisioning
Private OS o
WY WRW W
Private NN N
Process/DB WLILS Lol o gk
Private Schema

Shared Schema RRW s Sf} ﬁ R

m W. Lehner, U. Sattler “Web-scale Data Management for the Cloud”
Springer, 2013




Authentication & Authorization
Checking Permissions and Indentity

Internal Schemes External Identity Federated Identity
Provider (Single Sign On)
e.g. Amazon IAM e.g. OpenlID e.g. SAML
Authenticate/Login e ---—-—---—----~----~—-~- - - ~--------"-"--"—“"~"“~-"-"-"“—-=---==----=
" " v
@ Authentication
a-Service

Authenticated Request ; ..
- d Authorization ﬁ

<

Response -

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

User-based Access Role-based Access Policies
Control Control

e.g. Amazon S3 ACLs e.g. Amazon |IAM e.g. XACML



Service Level Agreements (SLAS)
Specification of Application/Tenant Requirements

SLA —— Service Level Objectives:
e Availability

Technical Part * Durability

1. SLO

* Consistency/Staleness

2. SLO * Query Response Time
3. SLO

Legal Part
1. Fees
2. Penalties

LA




Service Level Agreements
Expressing application requirements

Functional Service Level Objectives
Guarantee a , feature”

Determined by database system
Examples: transactions, join

Non-Functional Service Level Objectives
Guarantee a certain quality of service (QoS)
Determined by database system and service provider
Examples:

- Continuous: response time (latency), throughput

* Binary: Elasticity, Read-your-writes



Service Level Objects
Making SLOs measurable through utilities

Utility expresses ,value® of a continuous non-functional

requirement:
futitity (metric) — [0,1]

=
J
=
]

Utility
Utility

20 ms
Latency

99.5%
Availability



Workload Management
Guaranteeing SLAs

Typical approach:

/

Maximize: ity i

b
il

response time

response time

m W. Lehner, U. Sattler “Web-scale Data Management for the Cloud”
Springer, 2013



Resource & Capacity Planning
From a DBaaS provider’s perspective

T Provisioned Resources:
Goal: minimize penalty and +' #No of Shard- or Replica

resource costs servers
* Comnuting, Storage,

Underprovisioning: apacities
Resources e SlAs violated
e Usage maximized
\,/
/ Actual
Expe Load
Load
‘ Overprovisioning:
* SLAs met
* Excess Capacities
T —
Time

m T. Lorido-Botran, J. Miguel-Alonso et al.: “Auto-scaling Techniques for
Elastic Applications in Cloud Environments”. Technical Report, 2013



SLAS i n the Wi Id Most DBaa$ systems offer no SLAs, or

only a a simple uptime guarantee

Model CAP SLASs

Table-Store CP
SimpleDB (NoSQL Service)

Table-Store CP
Dynamo-DB (NoSQL Service)

Table-Store CpP 99.9%
Azure Tables (NoSQL Service) uptime

Entity-Group CP
AE/Cloud DataStore Store

(NoSQL Service)
Object-Store AP 99.9%
S3, Az. Blob, GCS (NoSQL Service) uptime

(S3)



Open Research Questions
in Cloud Data Management

Service-Level Agreements

How can SLAs be guaranteed in a virtualized, multi-tenant
cloud environment?

Consistency

Which consistency guarantees can be provided in a geo-
replicated system without sacrificing availability?

Performance & Latency

How can a DBaaS deliver low latency in face of distributed
storage and application tiers?

Transactions
Can ACID transactions be aligned with NoSQL and scalability?



@ scom2015

Home CFP Submission Contact

3"d Workshop on Scalable Cloud Data
Management

Co-located with the IEEE BigData Conference. Santa Clara, CA, October 29th
2015

Submit Paper

www.scdm2015.com

Location : Santa Clara
Submission Deadline: August 30



Outline

o * Two problems:
Motivation .

Latency
* Polyglot Storage
"y ORESTES: a Cloud- * Vision: Orestes
~—— Database Middleware Middleware

Solving Latency and
Polyglot Storage

Wrap-up

0 B



Latency & Polyglot Storage

Two central problems

Goal of ORESTES: Solve both problems through a scalable
cloud-database middleware

If the application is geographically If one size doesn‘t fit all — how can
distributed, how can we guarantee polyglot persistence be leveraged
fast database access? on a declarative, automated basis?

T

o

_— O . S S S S S S e S e Ea S Eae B B B e e e e



Problem I: Latency

1000B(IN S

Average: 9,3s

Loading...

leConversmns

o Traffic

?% Visitors

Revenue

I

Aberdeen Group
Google
YaHoO!

amazoncom



Webseite
wird geladen

() [ O (T

If perceived speed is such an
import factor

...what causes slow page load times?



State of the art

Two bottlenecks: latency und processing

- ‘High Latency

O—0o0—E~

<

Processing Time

-
>E




Network Latency

The underlying problem of high page load times

Page Load Time (ms)

Page Load Time (ms)

3500 1
3000 1
2500 1
2000 1
1500 1

1000 -

3500 7
3000 1
2500 1
2000 1
1500 -

1000 -

1 Mbps

200 ms

2 Mbps

180 ms

3 Mbps

160 ms

Page Load Time as bandwidth increases

4Mbps  5Mbps  6Mbps  7Mbps  8Mbps  9Mbps 10 Mbps

Page Load Time as latency decreases

140 ms 120 ms 100 ms 80 ms 60 ms 40 ms 20ms

m l. Grigorik, High performance browser networking.
O'Reilly Media, 2013.




The low-latency vision
Data is served by ubiquitous web-caches

~ Lowlatency




The web’s caching model
Staleness as a consequence of scalability

Expiration-based Revalidations
Every object has a defined (x Allow clients and caches to
Time-To-Live (TTL) check freshness at the server

o (e K

Research Question:

Can database services leverage the web &
caching infrastructure for low latency with rich

consistency guarantees?



Problem II: Polyglot Persistence
Current best practice

Research Question: @

\ .
Can we automate the “  mapping problem?

)

data database



Vision
Schemas can be annotated with requirements

- Write Throughput > 10,000 RPS
- Read Availability > 99.9999%

- Scans = true T
- Full-Text-Search = true
- Monotonic Read = true

Schema

DBs
Tables
Fields

€



Vision
The Polyglot Persistence Mediator chooses the database

Application 5
Data and
Operations
) Annotated
Database 4 *°"  Polyglot Persistence "*e.p  Schema
Metrics ‘e A Mediator & .
I N . Latency < 30ms
dbl dbz db3



The Big Picture

Implementation in ORESTES Databace-ne-a-Service

Polyglot Storage and Low La?ébr?cdyteawr@/fhe central goals
of ORESTE%WL/L led REST caching, TVQ’@\L%@@@VS&O&@I@MMS,

A J? NAaYOL T T Ca%%rﬁzat&%@ Mul /-Tewawcg

vy """ wvyFW--—-—"""F-"" —_a—_—_—__,—__ - - - - - - - —- - —- - - - - T — — — — —
\ AN

Orestes

Servers

—_——e—e—ee— e e~

N e o e e e —



Outline

{t

0 B

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Cache Sketch

Approach

e Caching Arbitrary
Data

* Predicting TTLs

Polyglot Persistence

Mediator

 SLA-Approach

* Database
Selection



Web Caching Concepts

Invalidation- and expiration-based caches

n Client

Expiration-based Caches:

An object x is considered
fresh for TTL, seconds

The server assigns TTLs
for each object

Invalidation-based Caches:

Expose object eviction
operation to the server

Server/DB

((f



The Cache Sketch approach

Letting the client handle cache coherence

n o D 10101010  Bloom filter
ot lent Needs Revalidation?
Client Cache Sketch
Browser Caches, A A A
Forward Proxies,
Expirati ISP Caches Periodic at
Xpirations at every A | transaction
based Caches connect seconds begin
Request Cache
Path Hits Content Delivery C:D (2) CBD
Networks,
Reverse Proxies
Invalidation-
based Caches bt 10101010
/\ 10201040
Invalidations,
Records Report Expirations ~ Non-expired Counting
and Writes Record Keys Bloom Filter
----------- >»
o
. Server/DB €C——mmmmm o

Needs Invalidation? Server Cache Sketch

Staleness-Minimization

Invalidation-Minimization



The End-to-End Path of Requests
The Caching Hierarchy

Flash-Crowd
Protection

Higher

DB e Availability

L T Miss ™, e,

Client- * 4
_ Dynamic Web App (Browser:) Proxy ISP
e Cache Caches Reverse-

‘ ‘ Proxy Cache Orestes

Caches

aaaaaaa

Hit

| | |
Pe
s r

3 ,.,I,.,_.,

Updated by Updated by the
Cache Sketch server



The Client Cache Sketch

Let c, be the client Cache Sketch generated at time t, containing
the key key, of every record x that was written before it expired
in all caches, i.e. every x for which holds:

Ar(x,t., TTL),w(x,t,): t, + TTL >t > t, > t,

< Hit  key
Client Cache Sketch GET request i
h d b Cache i
find(key)— key — ... 1/0|l0|1]|1]|0|1|1|— Bits=1
hy \_/ / yes | - - —
k hash functions —/ m Bloom filter bits Revalidation



(@) Slow initial page loads

Solution: Cached Initialization
Clients load the Cache Sketch at connection

Every non-stale cached record can be reused
without degraded consistency



(2 Slow CRUD performance

Solution: A-Bounded Staleness
Clients refresh the Cache Sketch so its age never exceeds A
— Consistency guarantee: A-atomicity

Expiration- ' Invalidation-

CliciE based Caches based Caches >ehe
| | | |
| | | |
| I | |
| | |
Query Cache e Cache Sketch Ct; : : time t
Sketch
" ' : :
"/ fresh records I I
[ >t |
:4 Cache Hits ! :
| | | (.
| ' ! Ltime t + A
: Revalidate recqr‘d & Refresh Cachg Sketch >:
54 Fresh record & new Cache Sketch :
v v v v



(3 High Abort Rates in OCC

Solution: Conflict-Avoidant Optimistic Transactions
Cache Sketch fetched with transaction begin
Cached reads — Shorter transaction duration — less aborts

~— Begin Transaction @
K , (
Bloom Filter = REST-Server o
: - pya—y
Reads Cache WCI;IC’;GS : — ‘;j:
Client [ - (2)» REST-Server (Hladen) co
rites == RS
Cache o DB }
Commit: read- & write-set versions 9 REST-Server . Read all _lT_ T
~ ) Committed OR aborted + stale objects N Writes (Public) @
validation
4 prevent conflicting
y validations

Coordinator |



TTL Estimation

Determining the cache expiration

Problem: if TTL >> time to next write, then it is
contained in Cache Sketch unnecessarily long

TTL Estimator: finds , best”“ TTL
Trade-Off:

Shorter TTLs Longer TTLs

* l|ess invalidations * Higher cache-hit rates
* |ess stale reads e more invalidations



Performance

Northern California

Page load times with cached
initialization (simulation):

With Facebook’s

load time _
: cache hit rate: >2,5x

25OO§ improvement

2000}

1500}

1000}

500¢

i 3
— J - - ' L = hit ratios
0/0 0/20 20/0 20/2040/4066/2080/80

——

Setup: Client CDN 1 Orestes MongoDB

I
I
/

Average Latency for YCSB
Workloads A and B (real):

ms
s —nq 25% Read 5% Writes -
150} 5x latency
: improvement
100 [ oo o= —. Y A SE L -+
>0 /—’-+’—‘/‘
_—— threads

—e— Orestes (B) --=-- MongoDB (B)
-—-e-= Qrestes (A) ---=--- MongoDB (A)



Low Latency

If the appl Transparent end-to-end
distributec caching using the Cache
fast datab Sketch.

If one size doesn‘t fit all — how can
polyglot persistence be leveraged
on a declarative, automated basis?




Towards Automated Polyglot Persistence
Necessary steps

Goal:
Extend classic workload management to polyglot persistence
Leverage hetereogeneous (NoSQL) databases

1. Requirements 2. Resolution 3. Mediation
n ﬁ
& =
Tenant specifies Find or provision a Mediate data and
requirements as Service-  suitable combination database operations

Level-Agreements of databases



Step | - Requirements
Expressing the application’s needs

Annotation Type Annotated at
Read Availability Continuous
Write Availability Continuous
Read Latency Continuous
Write Latency Continuous
Write Throughput Continuous

Data Vol. Scalability
Write Scalability
Read Scalabilty
Elasticity

Durability
Replicated
Linearizability
Read-your-Writes
Causal Consistency
Writes follow reads
Monotonic Read
Monotonic Write
Scans

Sorting

Range Queries
Point Lookups
ACID Transactions
Conditional Updates
Joins

Analytics Integration
Fulltext Search
Atomic Updates

Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional

Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class
Field/Class
Field/Class
Field/Class
Field/Class
Field/Class
Field

Field

Field

Field

Class/DB

Field

Class/DB
Field/Class/DB
Field
Field/Class

/ Tenant

1. Define
schema

2. Annotate

'Database]

/ %,

Table !
| ™

-

Field Field Field [Field
[ | annotated

Inherits continuous
annotations

Annotations
Continuous non-functional
e.g. write latency < 15ms
Binary functional
e.g. Atomic updates
e Binary non-functional

e.g. Read-your-writes

(1) Requirements



Step Il - Resolution
Finding the best database

The Provider resolves the
requirements

RANK: scores available
database systems

Routing Model: defines the
optimal mapping from schema
elements to databases

/ Provider \

Either:
! Refuse or
available DBs «——— Pprovision new DB

Capabilities for

ll. Find optimal 2a. If unsatisfiable

RANK(schema_root, DBs)
through recursive descent
using annotated schema and metrics

2b. Generates
routing model
Routing Model
Route schema_element - db

e transform db-independent to db-
specific operations

(2) Resolution




DBs = { MongoDB, Riak,

Step “ - RESOIUtiOn Cassandra, CouchDB, Redis,
Ranking algorithm by example Rl 55 e

Annotations Schema RANK Algorithm
Lineariza- | DBs = { MongoDB, Riek,
o ECommerceDB Datab: ; r6, CouchB, Redls,
Availability 1 Redis 95%—=>0.05 1ms—>1
Customers MySQL 94%-> 0.04  40ms>0.2
Table
HBase 99.9%—>0.9 50ms—>0.1
/\ /. Kecursive descent
ShoppingBasket Continuous requirement -
List<String> String V databases calculate

Read latency db = futiiey(db. twilapility)




Step Il - Resolution
Ranking algorithm by example

Annotations Schema
Lineariza- ECommerceDB
bility | database
Availability __ﬂ\\\ 1
Customers
—////// Table
ShoppingBasket UserName
List<String> String

Read latency

N

DB Score

MongoDB 0.9
Redis 0.525
MySQL 0.12
HBase 0.5

Binary requirement =2

1. Exclude DBs that do not
support it

2. Recursive descent

3. Pick DB with best total
score and add it to
routing model

Routing Model:

Customers = MongoDB




Step Il - Mediation

Routing data and operations

The PPM routes data

Operation Rewriting:
translates from abstract to
database-specific operations

Runtime Metrics: Latency,
availability, etc. are reported
to the resolver

Primary Database Option: All
data periodically gets
materialized to designated
database

metrics

Application )

|

1. CRUD, queries,
transactions, etc.
Polyglot Persistence Mediator
e Uses Routing Model
Triggers periodic
materialization

N

(3) Mediation



Evaluation: News Article
Prototype of Polyglot Persistence Mediator in ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Article
Counter

\1 Announcing MongoDB 3.0 (mongodb.com) /
e

196 points by meghan 142 days ago | 144 comments | in pocket speich

read by 1.344.222




Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Counter updates kill performance



Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

No powerful queries



Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Article Imp.
g 1500
ID < Imp. =
Title ID g 1000 \
[47]
®
- -/L /
Document Sorted Set 0 A &
7500 9500 11500 13500 15500 17500
. mongoDB a redis Actual throughput in OPS
=== 0restes with PPM === Qrestes without PPM Varnish

Found Resolution



Outline

{t

0B

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Current/Future Work
Summary

Putting ORESTES into
practice



Outlook: Real-Time

Combining Query Caching, Continuous

. . ] Queries
Continuous Queries, Polyglot Queries (Websockets) |

O J Polyglot Views
Create

Update P Fresh Caches
N Ny
Delete tﬁ Eﬁ B

Fresh Cache Sketch

ORESTES 01111101J

Pub-Sub Pub-Sub

|




T,

oA
Summary .
y e //q(ﬁ
Cache Sketch: web caching for database services
Consistent (A-atomic) expiration-based caching
Invalidation-based caching with minimal purges
Bloom filter of stale objects & TTL Estimation
Polyglot Persistence Mediator:
1. SLA-annotated Schemas
2. Score DBs and choose best
3. Route data and operations

Requirements Resolution Mediation

s
-




T

Build faster Apps faster.




Page-Load Times
What impact does the Cache Sketch have?

Politik

11. November 2014 12:42 Uhr
Deutsche Rentenversicherung

Renten kénnten 2015 um
zwei Prozent steigen

Die Deutsche Ren(envevsbcnerung genl von
einem Anstieg Uber der Inflationsrate aus
Abschlagsfreie Rente ab 63 Jahren stoit auf
grorses Interesse

+156% <

Wirtschaft

BaQend

k H

FRANKFURT

11. November 2014 07:15 Uhr
HONORARBERATUNG

Guter Rat zur Geldanlage
ist selten

Honorarberatung st in Deutschiand endlich
gesetziich geregelt. Doch gibt es kaum
Honorarberater. Und gut qualifizierte noch viel
weniger

Kultur

11, November 2014 10:14 Uhr
NICOLAUS HARNONCOURT

Mozarts Triptychon

Nikolaus Harnoncourt ist der Detektiv unter
den Dinigenten. Jetzt legt er Indizien vor, wie
drel von Mozarts Sinfonien zu einem nie
gehorten Oratorium verschmelzen

a7 2014 06:39 Uhr

-~



Backend-as-a-Service

Tutorial on the BaaS paradigm from app perspective

Baoend Overview  Tutorial Download  Architecture
1

Updating and deleting data 12 3 4 5 6

~J
o]
\0

Both updates and inserts are performed by calling save on an object.

If at the time of the update the local copy was outdated, the operation will result in an error. In
the error callback we could either refresh the object with myTodo.load() and retry the update
or decide to overwrite the newer version at the server with our older version:

myTodo.save({
force : true //Overwrite even if our copy is outdated Deleted and saved! >
s

When objects reference each other, we can control, up to which depth referenced objects
should also be persisted using the depth parameter (persistence-by-reachabifity).

If we want to get rid of an object, we do a myTodo.delete() . delete has the same options as
save and behaves similarly.

Edit O HTML Css 15 OuTPUT

1 //The TodoService handles access to persistent Todo items
2 wvar listId = "tuterial-list" + Math.random();

var TodoService = (function() {

4 return {

5 [/save a Todo

Bk Teagbit ‘ www.bagend.com

1, .
//delete a Todo First Todo
delete: function(id) {

return DB.Todo.load(id).then(function(todo) {
return todo.delete();

w m

et ol
N @



Thank you

ritter,gessert@informatik.uni-hamburg.de




