
Scalable Stream Processing
Surveying Storm, Samza,
Spark & Flink

Wolfram Wingerath
ww@baqend.com

September 12, techcamp 2018, Hamburg

@baqendcom

Research:
• Real-Time Databases
• Stream Processing
• NoSQL & Cloud Databases
• …

Practice:
Backend-as-a-Service

Web Caching
Real-Time Database

…

+
•

•

•

•

www.baqend.com

About me
Wolfram Wingerath

PhD Thesis &
Research

Distributed
Systems

Engineer

Outline

• Big Picture:
• A Typical Data Pipeline
• Processing Frameworks

• Processing Models:
• Batch Processing
• Stream Processing

Future Directions
Real-Time Databases

Introduction
Big Data in Motion

System Survey
Big Data + Low Latency

∑

Wrap-Up
Summary & Discussion

IN PRACTICE

Scalable Data
Processing

ApplicationProcessing
Persistence/
Streaming Serving

Today‘s topic!

A Data Processing Pipeline

6

INTRODUCTION

Batch vs Stream
Processing

lo
w

la
te

n
cy

high throughput

Big Data Processing Frameworks
What are your options?

Amazon Elastic

MapReduce

Google Dataflow

What to use when?

9

Application
Batch

(e.g. MapReduce)
Persistence
(e.g. HDFS)

Serving
(e.g. HBase)

• Cost-effective & Efficient

• Easy to reason about: operating on complete data

But:

• High latency: jobs periodic (e.g. during night times)

Batch Processing
„Volume“

10

Stream Processing
„Velocity“

• Low end-to-end latency

• Challenges:

• Long-running jobs - no downtime allowed

• Asynchronism - data may arrive delayed or out-of-order

• Incomplete input - algorithms operate on partial data

• More: fault-tolerance, state management, guarantees, …

Streaming
(e.g. Kafka, Redis)

ApplicationServing
Real-Time

(e.g. Storm)

11

Typical Stream Operators
Examples

Filter & Transform

https://www.infoq.com/presentati
ons/stream-processors-databases 14

Group

Aggregates Windows

Filter Map GroupByKey

Tumbling

Sliding

SUM()

COUNT()

https://www.infoq.com/presentation
s/stream-processing-apache-flink

https://www.infoq.com/presentations/stream-processors-databases
https://www.infoq.com/presentations/stream-processing-apache-flink

Typical Use Case
Example from Yahoo!

https://yahooeng.tumblr.com/post/135321837876/
benchmarking-streaming-computation-engines-at 15

Input

• Read Ad tracking
data from Kafka

Filter

• Discard useless
data

Project

• Extract relevant
fields

Group

• By Ad campaign

Window

• Ad views per 10-
min-window

https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at

Wrap-up
Data Processing

• Processing frameworks abstract from scaling issues

16

Batch processing
• easy to reason about
• extremely efficient
• huge input-output

latency

Stream processing
• quick results
• purely incremental
• potentially complex to

handle

Outline

• System Survey:
• Processing Model

Overview
• Storm/Trident
• Samza
• Spark Streaming
• Flink

Future Directions
Real-Time Databases

Introduction
Big Data in Motion

System Survey
Big Data + Low Latency

∑

Wrap-Up
Summary & Discussion

SURVEY

Popular Stream
Processing Systems

Processing Models
Batch vs. Micro-Batch vs. Stream

low latency high throughput

stream batchmicro-batch

20

Overview

◦ First production-ready, well-adopted stream processor

◦ Compatible: native Java API, Thrift, distributed RPC

◦ Low-level: no primitives for joins or aggregations

◦ Native stream processor: latency < 50 ms feasible

◦ Big users: Twitter, Yahoo!, Spotify, Baidu, Alibaba, …

History

◦ 2010: developed at BackType (acquired by Twitter)

◦ 2011: open-sourced

◦ 2014: Apache top-level project

Storm
„Hadoop of real-time“

21

Dataflow

Cycles!

Directed Acyclic Graphs (DAG):
• Spouts: pull data into topology
• Bolts: do processing, emit data
• Asynchronous
• Lineage can be tracked for each tuple

→ At-least-once has 2x messaging
overhead

22

State Management
Recover State on Failure

• In-memory or Redis-backed reliable state

• Synchronous state communication on the critical path

→ infeasible for large state

24

Back Pressure
Throttling Ingestion on Overload

Approach: monitoring bolts‘ inbound buffer
1. Exceeding high watermark → throttle!
2. Falling below low watermark → full power!

1. too many
tuples

3. tuples get
replayed

2. tuples time
out and fail

25

Overview:

◦ Abstraction layer on top of Storm

◦ Released in 2012 (Storm 0.8.0)

◦ Micro-batching

◦ New features:

 High-level API: aggregations & joins

 Strong ordering

 Stateful exactly-once processing

 Performance penalty

Trident
Stateful Stream Joining on Storm

26

Trident
Partitioned Micro-Batching

27

3 Parti-
tions

3 BatchesIllustration taken from: “Storm
applied”, Sean T. Allen et al.

Overview
◦ Co-developed with Kafka

→ Kappa Architecture

◦ Simple: only single-step jobs

◦ Local state

◦ Native stream processor: low latency

◦ Users: LinkedIn, Uber, Netflix, TripAdvisor, Optimizely, …

History
◦ Developed at LinkedIn

◦ 2013: open-source (Apache Incubator)

◦ 2015: Apache top-level project

Samza
Real-Time on Top of Kafka

Illustration taken from: Jay Kreps, Questioning the Lambda Architecture (2014)
https://www.oreilly.com/ideas/questioning-the-lambda-architecture (2017-03-02) 28

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

Dataflow
Simple By Design

• Job: processing step (≈ Storm bolt)
→ Robust
→ But: often several jobs

• Task: job instance (parallelism)

• Message: single data item

• Output persisted in Kafka
→ Easy data sharing
→ Buffering (no back pressure!)
→ But: Increased latency

• Ordering within partitions

• Task = Kafka partitions: not-elastic on purpose

Martin Kleppmann, Turning the database inside-out with Apache Samza (2015)
https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/ (2017-02-23) 29

https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/

Samza
Local State

Illustrations taken from: Jay Kreps, Why local state is a fundamental primitive in stream processing (2014)
https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing (2017-02-26)

Advantages of local state:

• Buffering
→ No back pressure
→ At-least-once delivery
→ Simple recovery

• Fast lookups

30

Remote State Local State

https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing

Dataflow
Example: Enriching a Clickstream

Example: the enriched
clickstream is available to
every team within the
organization

Illustration taken from: Jay Kreps, Why local state is a fundamental primitive in stream processing (2014)
https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing (2017-02-26) 31

https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing

State Management
Straightforward Recovery

Illustration taken from: Navina Ramesh, Apache Samza, LinkedIn’s Framework for Stream Processing (2015)
https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing (2017-02-26) 32

https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing

Overview
◦ High-level API: immutable collections (RDDs)

◦ Community: 1000+ contributors in 2015

◦ Big users: Amazon, eBay, Yahoo!, IBM, Baidu, …

History
◦ 2009: developed at UC Berkeley

◦ 2010: open-sourced

◦ 2014: Apache top-level project

Spark
„MapReduce successor“

33

Core SQL MLlib GraphX
Spark

Streaming

Overview
◦ High-level API: DStreams (̴Java 8 Streams)

◦ Micro-Batching: seconds of latency

◦ Rich features: stateful, exactly-once, elastic

History
◦ 2011: start of development

◦ 2013: Spark Streaming becomes part of Spark Core

Spark Streaming

34

Resilient Distributed Data set (RDD)

◦ Immutable collection & deterministic operations

◦ Lineage tracking:
→ state can be reproduced
→ periodic checkpoints reduce recovery time

DStream: Discretized RDD

◦ RDDs are processed in order: no ordering within RDD

◦ RDD scheduling ̴50 ms → latency >100ms

Spark Streaming
Core Abstraction: DStream

Illustration taken from:
http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview (2017-02-26) 35

http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview

Example
Counting Page Views

Zaharia, Matei, et al. "Discretized streams: Fault-tolerant streaming computation at scale." Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 2013.

36

pageViews = readStream("http://...", "1s")
ones = pageViews.map(event => (event.url, 1))
counts = ones.runningReduce((a, b) => a + b)

Overview
◦ Native stream processor: Latency <100ms feasible

◦ Abstract API for stream and batch processing, stateful, exactly-
once delivery

◦ Many libraries: Table and SQL, CEP, Machine Learning , Gelly…

◦ Users: Alibaba, Ericsson, Otto Group, ResearchGate, Zalando…

History
◦ 2010: start as Stratosphere at TU Berlin, HU Berlin, and HPI

Potsdam

◦ 2014: Apache Incubator, project renamed to Flink

◦ 2015: Apache top-level project

Flink

37

Architecture
Streaming + Batch

38

https://www.infoq.com/presentation
s/stream-processing-apache-flink

https://www.infoq.com/presentations/stream-processing-apache-flink

Managed State
Streaming + Batch

39

https://www.infoq.com/presentation
s/stream-processing-apache-flink

• Automatic Backups of local state

• Stored in RocksDB, Savepoints written to HDFS

https://www.infoq.com/presentations/stream-processing-apache-flink

Highlight: Fault Tolerance
Distributed Snapshots

• Ordering within stream partitions
• Periodic checkpoints
• Recovery:

1. reset state to checkpoint
2. replay data from there

40

Illustration taken from:
https://ci.apache.org/projects/flink/flink-docs-release-
1.2/internals/stream_checkpointing.html (2017-02-26)

Exactly-once

https://ci.apache.org/projects/flink/flink-docs-release-1.2/internals/stream_checkpointing.html

Outline

• Discussion:
• Comparison Matrix
• Other Systems

• Takeaway

Future Directions
Real-Time Databases

Introduction
Big Data in Motion

System Survey
Big Data + Low Latency

∑

Wrap-Up
Summary & Discussion

WRAP UP

Side-by-side
comparison

Storm Trident Samza
Spark

Streaming
Flink

(streaming)

Strictest
Guarantee

at-least-
once

exactly-
once

at-least-
once

exactly-once exactly-once

Achievable
Latency

≪100 ms <100 ms <100 ms <1 second <100 ms

State
Management


(small state)


(small state)

  

Processing
Model

one-at-a-
time

micro-batch
one-at-a-

time
micro-batch

one-at-a-
time

Backpressure  
no

(buffering)  

Ordering 
between
batches

within
partitions

between
batches

within
partitions

Elasticity     

Comparison

43

Performance
Yahoo! Benchmark

44

“Storm […] and Flink […] show sub-second latencies at
relatively high throughputs with Storm having the lowest
99th percentile latency. Spark streaming […] supports high
throughputs, but at a relatively higher latency.”

From https://yahooeng.tumblr.com/post/135321837876/
benchmarking-streaming-computation-engines-at

 Based on real use case:
◦ Filter and count ad impressions

◦ 10 minute windows

And even more: Kinesis, Gearpump, MillWheel, Muppet,
S4, Photon, …

Other Systems

45

Heron Apex Dataflow

Beam
Kafka

Streams
IBM InfoSphere

Streams

Outline

• Real-Time Databases:
• Why Push-Based

Database Queries?
• Where Do Real-Time

Databases Fit in?
• Comparison Matrix:

• Meteor
• RethinkDB
• Parse
• Firebase
• Baqend

Future Directions
Real-Time Databases

Introduction
Big Data in Motion

System Survey
Big Data + Low Latency

∑

Wrap-Up
Summary & Discussion

REAL-TIME DBS

Combining databases
with streaming

Traditional Databases
No Request? No Data!

circular shapes ?

What‘s the
current state?

Query maintenance: periodic polling
→ Inefficient
→ Slow

48

Quick Comparison
DBMS vs. RT DB vs. DSMS vs. Stream Processing

Database
Management

static collections

Stream
Processing

ephemeral
streams

push-basedpull-based

Data Stream
Management

persistent/
ephemeral streams

Real-Time
Databases

evolving collections

Meteor
Poll-and-Diff Oplog Tailing

RethinkDB Parse Firebase Baqend

Scales with
write TP      

Scales with no.
of queries

    ?
(100k connections)



Composite
queries (AND/OR)

    
(AND In Firestore)



Sorted queries     
(single attribute)



Limit      

Offset     
(value-based)



Real-Time Databases
In a Nutshell

TAKEAWAY

Trade-Offs in
Stream Processing

 Stream Processors:

 Real-Time Databases integerate
Storage & Streaming

 Learn more: slides.baqend.com

Summary

@baqendcomww@baqend.com

latency throughput

@baqendcom

ww@baqend.com
Distributed Systems Engineer

• Web & Data Management
Workshops

• Performance Auditing
• Implementation Services

consulting@baqend.com

Our Product

Speed Kit:
• Accelerates Any Website
• Pluggable
• Easy Setup

test.speed-kit.com

Our Services

Who We Are

Wolfram Wingerath

mailto:consulting@baqend.com
http://www.test.speed-kit.com/

