e
...........

0“ -
oo o 4 P et as
g s, e o 1 P -
“ o % :; ',. ”
¢) .— e « @
@ ‘o \ ¥
L o ¥
® [et Y !)
L ‘7'» 4 L .
@ —a ¢t e "' NS » ®
< L ¥ 3 2
*]
.,0 Ve) \ NS v *
y . o @ @
|
i I\ ® o
® * e d : 5
L] - [B
& o + 9 .
. o
@
o L]
e o
.

Scalable Stream Processing

Surveying Storm, Samza,
Spark & Flink

Wolfram Wingerath
ww @ bagend.com

September 12, techcamp 2018, Hamburg

BaQend %Y @bagendcom

PhD Thesis &
Research

Research:

* NoSQL & Cloud Databases

Real-Time Databases
Stream Processing

UH
i‘ti_
2 Universitit Hamburg

About me

Wolfram Wingerath

00

Distributed
Systems
Engineer

Practice:
Backend-as-a-Service
Web Caching
Real-Time Database

BaQend

www.bagend.com

Outline

2.
%

Introduction
Big Data in Motion

System Survey
Big Data + Low Latency

Wrap-Up
Summary & Discussion

Future Directions
Real-Time Databases

Big Picture:

A Typical Data Pipeline
Processing Frameworks

Processing Models:

Batch Processing
Stream Processing

IN PRACTICE

Scalable Data
Processing

A Data Processing Pipeline

Today’s topic!

Persistence/
\/‘Q) Streaming I_Processing I Serving Application

INTRODUCTION

Batch vs Stream
Processing

Big Data Processing Frameworks
What are your options?

Spoﬂ? Ggogle Dataflo_w @ HHHHH

Wh aJ;J;,O vse when?

@ Flink §€, kafka streams
o TEREE

low latency

c concord

high throughput

Batch Processing
Volume”

e Cost-effective & Efficient

» Easy to reason about: operating on complete data
But:

* High latency: jobs periodic (e.g. during night times)

= 5 "o?"é"

Persistence Batch Serving

Application
(e.g. HDFS) (e.g. MapReduce) (e.g. HBase) PP

10

Stream Processing
\elocity“

Low end-to-end latency
Challenges:

Long-running jobs - no downtime allowed

Asynchronism - data may arrive delayed or out-of-order
Incomplete input - algorithms operate on partial data
More: fault-tolerance, state management, guarantees, ...

- -»Q?-»-é-»

Streaming Real-Time

Servin Application
(e.g. Kafka, Redis) (e.g. Storm) g PP

11

Typical Stream Operators

Examples
Filter & Transform Group
ohes _, """ _ smen He
=:= [:'IA - ITXX
Filter Map ee GroupByKey eo e
Aggregates Windows

®
COUNT()

https://www.infog.com/presentati

L.n.auik.n.i.aL.“.4;4[>>
Tumbling

e e >

Sliding

https://www.infog.com/presentation

ons/stream-processors-databases

s/stream-processing-apache-flink

14

https://www.infoq.com/presentations/stream-processors-databases
https://www.infoq.com/presentations/stream-processing-apache-flink

Typical Use Case

Example from Yahoo!

Input Filter

e Read Ad tracking e Discard useless
data from Kafka data

Project

e Extract relevant
HEe S

Group Window

e By Ad campaign e Ad views per 10-
min-window

https://yahooeng.tumblr.com/post/135321837876/
benchmarking-streaming-computation-engines-at

15

https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at

| Sad .
Wrap-up N 3
Data Processing > .2 ¢ -

e Processing frameworks abstract from scaling issues

& &

Batch processing Stream processing

* easy to reason about e quick results

e extremely efficient e purely incremental

* huge input-output e potentially complex to

latency handle

16

Outline

2
g

Introduction
Big Data in Motion

System Survey
Big Data + Low Latency

Wrap-Up
Summary & Discussion

Future Directions
Real-Time Databases

* System Survey:

Processing Model
Overview
Storm/Trident
Samza

Spark Streaming
Flink

SURVEY

Popular Stream
Processing Systems

Processing Models
Batch vs. Micro-Batch vs. Stream

stream micro-batch batch

&Flink ,

5 sTorM ‘
Trident 5‘)('.!!?g

Streaming

m T ¢ a4 Amazon Elastic
LL_/-J MapReduce

—mmm >
low latency high throughput

20

Storm) STORM

,Hadoop of real-time“

Overview
First production-ready, well-adopted stream processor
Compatible: native Java API, Thrift, distributed RPC
Low-level: no primitives for joins or aggregations
Native stream processor: latency < 50 ms feasible
Big users: Twitter, Yahoo!, Spotify, Baidu, Alibaba, ...
History
2010: developed at BackType (acquired by Twitter)
2011: open-sourced
2014: Apache top-level project

21

Dataflow

Directed Acyclig Graphs (DAGSl:

reaming

e Spouts: pull datarinte topol
* Bolts: do proces¥ng
* Asynchrono
. spout
* Lineage can et
— At-least-once ha
overhead

| serving ,

i bolt
Cycles!

/} STORM

22

State Management Y STORM

Recover State on Failure

* In-memory or Redis-backed reliable state
* Synchronous state communication on the critical path
— infeasible for large state

I serving

24

Back Pressure Y cTORM
Throttling Ingestion on Overload

1. too many 2. tuples time
tuples > out and fail

3. tuples get
replayed

Approach: monitoring bolts’ inbound buffer
1. Exceeding high watermark — throttle!
2. Falling below low watermark — full power!

25

Trident

Stateful Stream Joining on Storm

Overview:
Abstraction layer on top of Storm
Released in 2012 (Storm 0.8.0)
Micro-batching
New features:
 High-level API: aggregations & joins
- Strong ordering
- Stateful exactly-once processing

- Performance penalty

5 STORM

Trident

26

Trident

Partitioned Micro-Batching

3 Parti- /

Spout

Trident stream

Operation

Batch 1

Trident stream

Batch 2

El-u [namez"value"]l

i|-u [name="va1ue"]|

u_l [name="value"] |

tions

L I-u [name="value"] |

|-u [name="va1ue"]|

u_l [name="value"] |

1
1
1
1
I—u [name="value"

]

|-u [name="va1ue"]|

u_l [name="value"] |

[~

Illustration taken from: “Storm

applied”, Sean T. Allen et al.

3 Batches

STORM
Trident

Partition 1
Partition 2

Partition 3

27

s

Real-Time on Top of Kafka
Overview 15t Recora ek
Co-developed with Kafka l l

— Kappa Architecture
Simple: only single-step jobs
Local state

i
ﬂiEﬂ-iEE?BQ‘IEIHIEE

Native stream processor: low latency
Users: LinkedIn, Uber, Netflix, TripAdvisor, Optimizely, ...

History
Developed at LinkedIn

2013: open-source (Apache Incubator)
2015: Apache top-level project

Illustration taken from: Jay Kreps, Questioning the Lambda Architecture (2014)
https://www.oreilly.com/ideas/questioning-the-lambda-architecture (2017-03-02)

28

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

s

Dataflow
Simple By Design

Kafka
* Job: processing st-eE (ng'aﬁn‘bat-) —————— 1- -

— Robust : :
— But: often sev ra$%zé-]Ob S’E'mza.]Ob
* Task: job instancq (parattefsm) '@{3

* Message: single data ite

* Output persisted in Kafka Kaflka
— EasydatashariNg = = = = = = e e e v e e e e e =
— Buffering (no back pressurel) ¢

— But: Increased latency
* Ordering within partitions
* Task = Kafka partitions: not-e

Martin Kleppmann, Turning the database inside-out with Apache Samza (2015)
https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/ (2017-02-23)

29

https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/

Samza
Local State

Advantages of local state:
 Buffering - D
> N |bggk RERSSUIRy sob
- At-lea e delive

Stream 'Proceséiﬁg Job

QL QL3

=

Output Changelog
Stream Stream

5 BHE

Remote State Local State

m Illustrations taken from: Jay Kreps, Why local state is a fundamental primitive in stream processing (2014)
https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing (2017-02-26)

https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing

Dataflow
Example: Enriching a Clickstream

Frontend
Application Database
\ User Account

Clicks

Updates
Example: the enriched \/
clickstream is available to Stream
e Processing
every team within the Job
L |
organ Ization Enriched Clicks

v
=

Output
Stream

m Illustration taken from: Jay Kreps, Why local state is a fundamental primitive in stream processing (2014)
https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing (2017-02-26)

31

https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing

State Management
Straightforward Recovery

Stream A

Restores consistent
state by consuming
from its changelog
partition

i

l Restored F—
l H H
[

L

Task 1 E Task 2 @

Stream B Changelog Stream

m Illustration taken from: Navina Ramesh, Apache Samza, LinkedIn’s Framework for Stream Processing (2015)
https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing (2017-02-26)

https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing

Spark I
,MapReduce successor” Spr K
Overview

High-level API: immutable collections (RDDs)

Streaming

Community: 1000+ contributors in 2015
Big users: Amazon, eBay, Yahoo!, IBM, Baidu, ...

History
2009: developed at UC Berkeley

2010: open-sourced
2014: Apache top-level project

33

Spark Streaming spaik’

Streaming

Overview
High-level API: DStreams (~Java 8 Streams)
Micro-Batching: seconds of latency
Rich features: stateful, exactly-once, elastic

History
2011: start of development
2013: Spark Streaming becomes part of Spark Core

34

Spark Streaming Soark’

Core Abstraction: DStream Streaming

Resilient Distributed Data set (RDD)
Immutable collection & deterministic operations

Lineage tracking:
— state can be reproduced
— periodic checkpoints reduce recovery time

DStream: Discretized RDD
RDDs are processed in order: no ordering within RDD
RDD scheduling ~50 ms — latency >100ms

input data batches of batches of
stream Spark input data Spark processed data

Streaming Engine

Illustration taken from:
http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview (2017-02-26)

35

http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview

Example soark’

Counting Page Views Streaming

EpageViews = preadStream("http://...", "1ls")
~ones = pageViews.map(event => (event.url, 1))
counts = ones.runningReduce((a, b) => a + b)

pageViews ones counts
DStream DStream DStream

interval
[0, 1)

map reduce

interval
[1,2)

Zaharia, Matei, et al. "Discretized streams: Fault-tolerant streaming computation at scale." Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 2013.

36

Flink

Overview

Native stream processor: Latency <100ms feasible

Abstract API for stream and batch processing, stateful, exactly-
once delivery

Many libraries: Table and SQL, CEP, Machine Learning , Gelly...
Users: Alibaba, Ericsson, Otto Group, ResearchGate, Zalando...
History

2010: start as Stratosphere at TU Berlin, HU Berlin, and HP!
Potsdam

2014: Apache Incubator, project renamed to Flink
2015: Apache top-level project

37

Architecture
Streaming + Batch Flink

& .
O =

DataStream (Java / Scala) DataSet (Java/Scala)

Streaming dataflow runtime

Table
Hadoop M/R
Table

https://www.infoq.com/presentation
s/stream-processing-apache-flink

38

https://www.infoq.com/presentations/stream-processing-apache-flink

Managed State

Streaming + Batch

Flink

Automatic Backups of local state
Stored in RocksDB, Savepoints written to HDFS

Web g Operator with windows
server (large state)

Periodic backup /
State recovery
backend

Distributed

File System

Stream processor: Flink

https://www.infog.com/presentation
s/stream-processing-apache-flink 39

https://www.infoq.com/presentations/stream-processing-apache-flink

Highlight: Fault Tolerance
Distributed Snapshots

data stream

Do Flink

<+ newer records older records =
checkpoint checkpoint stream record
barrier n barrier n-1 (event)
l J \ J \ J
Y Y Y
part of part of part of
checkpoint n+1 checkpoint n checkpoint n-1

* Ordering within stream partitions
* Periodic checkpoints

—pExactly-once
* Recovery:
1. reset state to checkpoint
2' rep/ay data from there m IP:ltL’:;tsr:a/;ic?.r‘]art:):j]a:((:ir::‘.f(;cr)grr/];)roiects/flink/ﬂink-docs—release—

1.2/internals/stream checkpointing.html| (2017-02-26)

https://ci.apache.org/projects/flink/flink-docs-release-1.2/internals/stream_checkpointing.html

Outline

E: Introduction * Discussion:

Big Data in Motion * Comparison Matrix
e Other Systems

* Takeaway
System Survey

Big Data + Low Latency

Wrap-Up
Summary & Discussion

Future Directions
Real-Time Databases

WRAP UP
Side-by-side
comparison

Comparison

Strictest
Guarantee

Achievable
Latency

State
Management

Processing
Model

Backpressure

Ordering

Elasticity

Storm

at-least-
once

<100 ms

(small state)

one-at-a-
time

v

x
v

Trident

exactly-
once

<100 ms

(small state)

micro-batch

v

between
batches

v

Samza

at-least-
once

<100 ms

v

one-at-a-
time

no
(buffering)

within
partitions

X

Spark
Streaming

exactly-once

<1 second

v

micro-batch

v

between
batches

v

Flink
(streaming)

exactly-once

<100 ms

v

one-at-a-
time

v

within
partitions

v

43

Performance
Yahoo! Benchmark

Based on real use case:
Filter and count ad impressions
10 minute windows

“Storm [...] and Flink [...] show sub-second latencies at
relatively high throughputs with Storm having the lowest
99th percentile latency. Spark streaming [...] supports high
throughputs, but at a relatively higher latency.”

From https://yahooeng.tumblr.com/post/135321837876/
benchmarking-streaming-computation-engines-at

44

Other Systems

Heron Apex Dataflow
(™ ” R
w APEX
Kafka IBM InfoSphere
Beam
Streams Streams

3 i &3

And even more: Kinesis, Gearpump, MillWheel, Muppet,
S4, Photon, ...

45

Outline

%&l

Introduction

System Survey

_9 Wrap-Up

o

Future Directions
Real-Time Databases

* Real-Time Databases:
 Why Push-Based
Database Queries?
e Where Do Real-Time
Databases Fit in?
 Comparison Matrix:
* Meteor
 RethinkDB
* Parse
* Firebase
 Bagend

VE Y My e o

TR 0 1 e o

REAL-TIME DBS

Combining databases

with streaming

Traditional Databases
No Request? No Datal!

What's the
current state?

circular shapes

Query maintenance: periodic polling
- Inefficient
- Slow

48

Quick Comparison
DBMS vs. RT DB vs. DSMS vs. Stream Processing

METE\ R
4) RethinkDB

@ Parse

7”7 Firebase

Database Real-Tim@ata Stream Stream
Management Databas®&danagement Processing

, , Persmtent/ ephemeral
static collections evolving collerg:emeral streams ctreams

BN S S

pull-based push-based

. a2
Real-Time Databases o

In @ Nutshell

2 o *° P
A ¥ Q NS
< : Q@‘
W 3 /
Meteor RethinkDB Parse Firebase
Poll-and-Diff Oplog Tailing
Scales with
write TP ‘/ X X X

Scales with no. \/ ?

of queries (100k connections)

Composite \/

queries (AND/OR) (AND In Firestore)

I I NIEN ENES

NSNS N %
NSNS NS

Sorted queries X
(single attribute)
Limit \/
Offset X

(value-based)

LA BEL L
TAKEAWAY cecocos o™ ©

Trade-Offs in
Stream Processing

N\ — 'C. .- -
- 1 P.‘ g -
i -
e = | 1™ - _ .
- P

o
»
e p—

\
|
N

» .
.1;:“—

Summary

Stream Processors:

/2) STORM éﬂmk m SpOl"lf(\ZStreaming

(—é_é—é—é—)

latency throughput

Real-Time Databases integerate
Storage & Streaming

Learn more: slides.bagend.com

BaQend ww@bagend.com Y @bagendcom

Who We Are

O »
©

Our Product Our Services
Speed Kit: * Web & Data Management
* Accelerates Any Website Workshops
* Pluggable * Performance Auditing
* Easy Setup * Implementation Services
test.speed-kit.com consulting@bagend.com

BaQend Wolfram Wingerath ww@bagend.com

Distributed Systems Engineer

mailto:consulting@baqend.com
http://www.test.speed-kit.com/

